Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices

被引:2
|
作者
Chehab, Jean-Paul [1 ]
Raydan, Marcos [2 ]
机构
[1] Univ Picardie Jules Verne, LAMFA, CNRS, UMR 7352, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Simon Bolivar, Dept Comp Cient & Estadist, Ap 89000, Caracas 1080A, Venezuela
关键词
preconditioning; cones of matrices; gradient method; minimal residual method; APPROXIMATE-INVERSE; ITERATIVE METHOD; EQUATIONS;
D O I
10.3390/math4030046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We focus on inverse preconditioners based on minimizing F (X) = 1 - cos (XA, I), where XA is the preconditioned matrix and A is symmetric and positive definite. We present and analyze gradient-type methods to minimize F (X) on a suitable compact set. For this, we use the geometrical properties of the non-polyhedral cone of symmetric and positive definite matrices, and also the special properties of F (X) on the feasible set. Preliminary and encouraging numerical results are also presented in which dense and sparse approximations are included.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Approximation of the determinant of large sparse symmetric positive definite matrices
    Reusken, A
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (03) : 799 - 818
  • [32] Scaling symmetric positive definite matrices to prescribed row sums
    O'Leary, DP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 : 185 - 191
  • [33] A small note on the scaling of symmetric positive definite semiseparable matrices
    Vandebril, R
    Golub, G
    Van Barel, M
    NUMERICAL ALGORITHMS, 2006, 41 (03) : 319 - 326
  • [35] mbend: an R package for bending non-positive-definite symmetric matrices to positive-definite
    Nilforooshan, Mohammad Ali
    BMC GENETICS, 2020, 21 (01)
  • [36] Discriminative Analysis for Symmetric Positive Definite Matrices on Lie Groups
    Xu, Chunyan
    Lu, Canyi
    Gao, Junbin
    Zheng, Wei
    Wang, Tianjiang
    Yan, Shuicheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2015, 25 (10) : 1576 - 1585
  • [37] Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices
    Jayasumana, Sadeep
    Hartley, Richard
    Salzmann, Mathieu
    Li, Hongdong
    Harandi, Mehrtash
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 73 - 80
  • [38] An incomplete Cholesky factorization for dense symmetric positive definite matrices
    Lin, CJ
    Saigal, R
    BIT NUMERICAL MATHEMATICS, 2000, 40 (03) : 536 - 558
  • [39] A Statistical Recurrent Model on the Manifold of Symmetric Positive Definite Matrices
    Chakraborty, Rudrasis
    Yang, Chun-Hao
    Zhen, Xingjian
    Banerjee, Monami
    Archer, Derek
    Vaillancourt, David
    Singh, Vikas
    Vemuri, Baba C.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [40] Riemannian competitive learning for symmetric positive definite matrices clustering
    Zheng, Ligang
    Qiu, Guoping
    Huang, Jiwu
    NEUROCOMPUTING, 2018, 295 : 153 - 164