On quantum de Rham cohomology theory

被引:1
|
作者
Cao, HD [1 ]
Zhou, J [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
D O I
10.1090/S1079-6762-99-00056-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the quantum exterior product boolean AND(h) and quantum exterior differential dh on Poisson manifolds. The quantum de Rham cohomology, which is a deformation quantization of the de Rham cohomology, is defined as the cohomology of d(h). We also define the quantum Dolbeault cohomology. A version of quantum integral on symplectic manifolds is considered and the corresponding quantum Stokes theorem is stated. We also derive the quantum hard Lefschetz theorem. By replacing d by d(h) and boolean AND by boolean AND(h) in the usual definitions, we define many quantum analogues of important objects in differential geometry, e.g. quantum curvature. The quantum characteristic classes are then studied along the lines of the classical Chern-Weil theory. The quantum equivariant de Rham cohomology is defined in the similar fashion.
引用
收藏
页码:24 / 34
页数:11
相关论文
共 50 条
  • [41] Punctured local holomorphic de Rham cohomology
    Huang, XJ
    Luk, HS
    Yau, SST
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (03) : 633 - 640
  • [42] OVERCONVERGENT DE RHAM-WITT COHOMOLOGY
    Davis, Christopher
    Langer, Andreas
    Zink, Thomas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2011, 44 (02): : 197 - 262
  • [43] Poincaré duality for algebraic de rham cohomology
    Francesco Baldassarri
    Maurizio Cailotto
    Luisa Fiorot
    manuscripta mathematica, 2004, 114 : 61 - 116
  • [44] The de Rham-Fargues-Fontaine cohomology
    Bras, Arthur-Cesar Le
    Vezzani, Alberto
    ALGEBRA & NUMBER THEORY, 2023, 17 (12) : 2097 - 2150
  • [45] A VANISHING THEOREM IN TWISTED DE RHAM COHOMOLOGY
    Ferreira, Ana Cristina
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (02) : 501 - 508
  • [46] Reconstruction of the stacky approach to de Rham cohomology
    Shubhodip Mondal
    Mathematische Zeitschrift, 2022, 302 : 687 - 693
  • [47] Finiteness of de Rham cohomology in rigid analysis
    Grosse-Klönne, E
    DUKE MATHEMATICAL JOURNAL, 2002, 113 (01) : 57 - 91
  • [48] MODULAR FORMS, DE RHAM COHOMOLOGY AND CONGRUENCES
    Kazalicki, Matija
    Scholl, Anthony J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (10) : 7097 - 7117
  • [49] Superspace de Rham complex and relative cohomology
    Linch, William D., III
    Randall, Stephen
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09): : 1 - 22
  • [50] On the de-Rham cohomology of hyperelliptic curves
    Köck B.
    Tait J.
    Research in Number Theory, 2018, 4 (2)