On quantum de Rham cohomology theory

被引:1
|
作者
Cao, HD [1 ]
Zhou, J [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
D O I
10.1090/S1079-6762-99-00056-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the quantum exterior product boolean AND(h) and quantum exterior differential dh on Poisson manifolds. The quantum de Rham cohomology, which is a deformation quantization of the de Rham cohomology, is defined as the cohomology of d(h). We also define the quantum Dolbeault cohomology. A version of quantum integral on symplectic manifolds is considered and the corresponding quantum Stokes theorem is stated. We also derive the quantum hard Lefschetz theorem. By replacing d by d(h) and boolean AND by boolean AND(h) in the usual definitions, we define many quantum analogues of important objects in differential geometry, e.g. quantum curvature. The quantum characteristic classes are then studied along the lines of the classical Chern-Weil theory. The quantum equivariant de Rham cohomology is defined in the similar fashion.
引用
收藏
页码:24 / 34
页数:11
相关论文
共 50 条
  • [21] ON DE RHAM AND DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS
    S. CONSOLE
    A. FINO
    H. KASUYA
    Transformation Groups, 2016, 21 : 653 - 680
  • [22] De Rham Cohomology and Integration in Manifolds
    A. B. Sossinsky
    Mathematical Notes, 2020, 107 : 1034 - 1037
  • [23] Dwork cohomology, de Rham cohomology, and hypergeometric functions
    Adolphson, A
    Sperber, S
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (02) : 319 - 348
  • [24] de Rham cohomology of local cohomology modules II
    Tony J. Puthenpurakal
    Rakesh B. T. Reddy
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 77 - 94
  • [25] Loewy filtration and quantum de Rham cohomology over quantum divided power algebra
    Gu, Haixia
    Hu, Naihong
    JOURNAL OF ALGEBRA, 2015, 435 : 1 - 32
  • [26] A spectral sequence for de Rham cohomology
    Xie, Bingyong
    ACTA ARITHMETICA, 2011, 149 (03) : 245 - 263
  • [27] On approximations of the de Rham complex and their cohomology
    Bavula, V. V.
    Akcin, H. Melis Tekin
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) : 1447 - 1463
  • [28] ON DE RHAM AND DOLBEAULT COHOMOLOGY OF SOLVMANIFOLDS
    Console, S.
    Fino, A.
    Kasuya, H.
    TRANSFORMATION GROUPS, 2016, 21 (03) : 653 - 680
  • [29] The de Rham cohomology of the Suzuki curves
    Malmskog, Beth
    Pries, Rachel
    Weir, Colin
    ARITHMETIC GEOMETRY: COMPUTATION AND APPLICATIONS, 2019, 722 : 105 - 119
  • [30] DE RHAM COHOMOLOGY OF FLAG VARIETIES
    MARLIN, R
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1977, 105 (01): : 89 - 96