High-order central WENO schemes for multidimensional Hamilton-Jacobi equations

被引:63
|
作者
Bryson, S [2 ]
Levy, D
机构
[1] NASA, Ames Res Ctr, NASA Adv Supercomp Div, Moffett Field, CA 94035 USA
[2] Stanford Univ, Program Sci Comp Computat Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi equations; central schemes; high order; WENO; CWENO;
D O I
10.1137/S0036142902408404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third- order scheme: one scheme that is based on a genuinely two-dimensional central weighted ENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multidimensional fifth-order scheme. Our numerical examples in one, two, and three space dimensions verify the expected order of accuracy of the schemes.
引用
收藏
页码:1339 / 1369
页数:31
相关论文
共 50 条
  • [41] Finite volume schemes for Hamilton-Jacobi equations
    Kossioris, G
    Makridakis, C
    Souganidis, PE
    NUMERISCHE MATHEMATIK, 1999, 83 (03) : 427 - 442
  • [42] Convex ENO schemes for hamilton-jacobi equations
    Lin, Chi-Tien
    Liu, Xu-Dong
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (1-2) : 195 - 211
  • [43] Weighted ENO schemes for Hamilton-Jacobi equations
    Jiang, GS
    Peng, DP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2126 - 2143
  • [44] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Han, Wonho
    Kim, Kwangil
    Hong, Unhyok
    APPLICATIONS OF MATHEMATICS, 2023, 68 (05) : 661 - 684
  • [45] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Wonho Han
    Kwangil Kim
    Unhyok Hong
    Applications of Mathematics, 2023, 68 : 661 - 684
  • [46] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Han, Wonho
    Kim, Kwangil
    Hong, Unhyok
    Applications of Mathematics, 2023, 68 (05): : 661 - 684
  • [47] CONSTRUCTION OF SIMPLE, STABLE, AND CONVERGENT HIGH ORDER SCHEMES FOR STEADY FIRST ORDER HAMILTON-JACOBI EQUATIONS
    Abgrall, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 2419 - 2446
  • [48] Finite Volume Hermite WENO Schemes for Solving the Hamilton-Jacobi Equation
    Zhu, Jun
    Qiu, Jianxian
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (04) : 959 - 980
  • [49] New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations
    Kurganov, A
    Tadmor, E
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) : 720 - 742
  • [50] A New Type of Increasingly Higher Order of Finite Difference Ghost Multi-resolution WENO Schemes for Hamilton-Jacobi Equations
    Zhang, Yan
    Zhu, Jun
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (02)