High-order central WENO schemes for multidimensional Hamilton-Jacobi equations

被引:63
|
作者
Bryson, S [2 ]
Levy, D
机构
[1] NASA, Ames Res Ctr, NASA Adv Supercomp Div, Moffett Field, CA 94035 USA
[2] Stanford Univ, Program Sci Comp Computat Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi equations; central schemes; high order; WENO; CWENO;
D O I
10.1137/S0036142902408404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third- order scheme: one scheme that is based on a genuinely two-dimensional central weighted ENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multidimensional fifth-order scheme. Our numerical examples in one, two, and three space dimensions verify the expected order of accuracy of the schemes.
引用
收藏
页码:1339 / 1369
页数:31
相关论文
共 50 条
  • [11] High order finite difference hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes
    Zheng, Feng
    Shu, Chi-Wang
    Qiu, Jianxian
    COMPUTERS & FLUIDS, 2019, 183 (53-65) : 53 - 65
  • [12] Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes
    Zheng, Feng
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 423 - 445
  • [13] Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes
    Zhu, Jun
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 254 : 76 - 92
  • [14] Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes
    Zhu, Jun
    Qiu, Jianxian
    Journal of Computational Physics, 2013, 254 : 76 - 92
  • [15] Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations
    Zheng, Feng
    Shu, Chi-Wang
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 337 : 27 - 41
  • [16] A new type of finite difference WENO schemes for Hamilton-Jacobi equations
    Cheng, Xiaohan
    Feng, Jianhu
    Zheng, Supei
    Song, Xueli
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (2-3):
  • [17] New Finite Difference Hermite WENO Schemes for Hamilton-Jacobi Equations
    Zhu, Jun
    Zheng, Feng
    Qiu, Jianxian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
  • [18] High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton-Jacobi equations
    Steve, BA
    Levy, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 189 (01) : 63 - 87
  • [19] High-resolution nonoscillatory central schemes for Hamilton-Jacobi equations
    Lin, CT
    Tadmor, E
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2163 - 2186
  • [20] On moving mesh WENO schemes with characteristic boundary conditions for Hamilton-Jacobi equations
    Li, Yue
    Cheng, Juan
    Xia, Yinhua
    Shu, Chi-Wang
    COMPUTERS & FLUIDS, 2020, 205