High-order central WENO schemes for multidimensional Hamilton-Jacobi equations

被引:63
|
作者
Bryson, S [2 ]
Levy, D
机构
[1] NASA, Ames Res Ctr, NASA Adv Supercomp Div, Moffett Field, CA 94035 USA
[2] Stanford Univ, Program Sci Comp Computat Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi equations; central schemes; high order; WENO; CWENO;
D O I
10.1137/S0036142902408404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third- order scheme: one scheme that is based on a genuinely two-dimensional central weighted ENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multidimensional fifth-order scheme. Our numerical examples in one, two, and three space dimensions verify the expected order of accuracy of the schemes.
引用
收藏
页码:1339 / 1369
页数:31
相关论文
共 50 条
  • [31] HIGH ORDER FINITE DIFFERENCE HERMITE WENO FAST SWEEPING METHODS FOR STATIC HAMILTON-JACOBI EQUATIONS
    Ren, Yupeng
    Xing, Yulong
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06): : 1064 - 1092
  • [32] High Order Arbitrary Lagrangian-Eulerian Finite Difference WENO Scheme for Hamilton-Jacobi Equations
    Li, Yue
    Cheng, Juan
    Xia, Yinhua
    Shu, Chi-Wang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) : 1530 - 1574
  • [33] A third-order WENO scheme based on exponential polynomials for Hamilton-Jacobi equations
    Kim, Chang Ho
    Ha, Youngsoo
    Yang, Hyoseon
    Yoon, Jungho
    APPLIED NUMERICAL MATHEMATICS, 2021, 165 (165) : 167 - 183
  • [34] Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes
    Zhu, Jun
    Qiu, Jianxian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (10) : 1137 - 1150
  • [35] Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations
    Zhanjing Tao
    Jianxian Qiu
    Advances in Computational Mathematics, 2017, 43 : 1023 - 1058
  • [36] A new third-order EXP-WENO scheme for Hamilton-Jacobi equations
    Abedian, Rooholah
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (06):
  • [37] Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations
    Tao, Zhanjing
    Qiu, Jianxian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (05) : 1023 - 1058
  • [38] ALTERNATING EVOLUTION SCHEMES FOR HAMILTON-JACOBI EQUATIONS
    Liu, Hailiang
    Pollack, Michael
    Saran, Haseena
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A122 - A149
  • [39] HERMITE WENO SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS FOR HAMILTON-JACOBI EQUATIONS
    Jianxian Qiu (Department of Mathematics
    Journal of Computational Mathematics, 2007, (02) : 131 - 144
  • [40] Hermite WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2007, 25 (02) : 131 - 144