High-order central WENO schemes for multidimensional Hamilton-Jacobi equations

被引:63
|
作者
Bryson, S [2 ]
Levy, D
机构
[1] NASA, Ames Res Ctr, NASA Adv Supercomp Div, Moffett Field, CA 94035 USA
[2] Stanford Univ, Program Sci Comp Computat Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi equations; central schemes; high order; WENO; CWENO;
D O I
10.1137/S0036142902408404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new third- and fifth-order Godunov-type central schemes for approximating solutions of the Hamilton-Jacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the third- order scheme: one scheme that is based on a genuinely two-dimensional central weighted ENO reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruction. The simpler dimension-by-dimension variant is then extended to a multidimensional fifth-order scheme. Our numerical examples in one, two, and three space dimensions verify the expected order of accuracy of the schemes.
引用
收藏
页码:1339 / 1369
页数:31
相关论文
共 50 条
  • [1] HIGH-ORDER WENO SCHEMES FOR HAMILTON-JACOBI EQUATIONS ON TRIANGULAR MESHES
    Zhang, Yong-Tao
    Shu, Chi-Wang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (03): : 1005 - 1030
  • [2] WENO schemes with adaptive order for Hamilton-Jacobi equations
    Abedian, Rooholah
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (06):
  • [3] A New Type of High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes
    Zhu, Jun
    Qiu, Jianxian
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (03) : 897 - 920
  • [4] Central schemes for multidimensional Hamilton-Jacobi equations
    Bryson, S
    Levy, D
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03): : 767 - 791
  • [5] Central WENO schemes for Hamilton-Jacobi equations on triangular meshes
    Levy, Doron
    Nayak, Suhas
    Shu, Chi-Wang
    Zhang, Yong-Tao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (06): : 2229 - 2247
  • [6] ANTI-DIFFUSIVE HIGH ORDER WENO SCHEMES FOR HAMILTON-JACOBI EQUATIONS
    Xu, Zhengfu
    Shu, Chi-Wang
    METHODS AND APPLICATIONS OF ANALYSIS, 2005, 12 (02) : 169 - 190
  • [7] High-order schemes for Hamilton-Jacobi equations on triangular meshes
    Li, XG
    Chan, CK
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 227 - 241
  • [8] HIGH-ORDER ESSENTIALLY NONOSCILLATORY SCHEMES FOR HAMILTON-JACOBI EQUATIONS
    OSHER, S
    SHU, CW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 907 - 922
  • [9] Hermite WENO schemes for Hamilton-Jacobi equations
    Qiu, JX
    Shu, CW
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (01) : 82 - 99
  • [10] High-order schemes for multi-dimensional Hamilton-Jacobi equations
    Bryson, S
    Levy, D
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 387 - 396