Implicit-explicit multistep methods for general two-dimensional nonlinear Schrodinger equations

被引:18
|
作者
Gao, Yali [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
Nonlinear Schrodinger equation; Coupled nonlinear Schrodinger equations; Galerkin method; Implicit-explicit method; Finite element; DIFFERENTIAL-EQUATIONS; PARABOLIC EQUATIONS; GALERKIN METHODS; SOLITONS; FIBERS; WAVES; GAS;
D O I
10.1016/j.apnum.2016.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, implicit-explicit multistep Galerkin methods are studied for two-dimensional nonlinear Schrodinger equations and coupled nonlinear Schrodinger equations. The spatial discretization is based on Galerkin method using linear and quadratic basis functions on triangular and rectangular finite elements. And the implicit-explicit multistep method is used for temporal discretization. Linear and nonlinear numerical tests are presented to verify the validity and efficiency of the numerical methods. The numerical results record that the optimal order of the error in L-2 and L-infinity norm can be reached. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 60
页数:20
相关论文
共 50 条
  • [31] Implicit-explicit methods based on strong stability preserving multistep time discretizations
    Gjesdal, Thor
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (08) : 911 - 919
  • [32] Implicit-explicit time integration of nonlinear fractional differential equations
    Zhou, Yongtao
    Suzuki, Jorge L.
    Zhang, Chengjian
    Zayernouri, Mohsen
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 (156) : 555 - 583
  • [33] Implicit-Explicit Multistep Methods for Fast-Wave-Slow-Wave Problems
    Durran, Dale R.
    Blossey, Peter N.
    MONTHLY WEATHER REVIEW, 2012, 140 (04) : 1307 - 1325
  • [34] Extrapolation-based implicit-explicit general linear methods
    Angelamaria Cardone
    Zdzislaw Jackiewicz
    Adrian Sandu
    Hong Zhang
    Numerical Algorithms, 2014, 65 : 377 - 399
  • [35] Extrapolation-based implicit-explicit general linear methods
    Cardone, Angelamaria
    Jackiewicz, Zdzislaw
    Sandu, Adrian
    Zhang, Hong
    NUMERICAL ALGORITHMS, 2014, 65 (03) : 377 - 399
  • [36] Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour
    Burger, Raimund
    Inzunza, Daniel
    Mulet, Pep
    Villada, Luis M.
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 234 - 252
  • [37] Reducible KAM tori for two-dimensional nonlinear Schrodinger equations with explicit dependence on the spatial variable
    Geng, Jiansheng
    Xue, Shuaishuai
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (10)
  • [38] STABILITY OF IMPLICIT-EXPLICIT BACKWARD DIFFERENCE FORMULAS FOR NONLINEAR PARABOLIC EQUATIONS
    Akrivis, Georgios
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 464 - 484
  • [39] VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS
    Wang, Dong
    Ruuth, Steven J.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (06) : 838 - 855
  • [40] VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS
    StevenJ.Ruuth
    JournalofComputationalMathematics, 2008, 26 (06) : 838 - 855