In this paper, implicit-explicit multistep Galerkin methods are studied for two-dimensional nonlinear Schrodinger equations and coupled nonlinear Schrodinger equations. The spatial discretization is based on Galerkin method using linear and quadratic basis functions on triangular and rectangular finite elements. And the implicit-explicit multistep method is used for temporal discretization. Linear and nonlinear numerical tests are presented to verify the validity and efficiency of the numerical methods. The numerical results record that the optimal order of the error in L-2 and L-infinity norm can be reached. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USABeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
Zhou, Yongtao
Suzuki, Jorge L.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USABeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
Suzuki, Jorge L.
Zhang, Chengjian
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
Zhang, Chengjian
Zayernouri, Mohsen
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USABeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China