Reducible KAM tori for two-dimensional nonlinear Schrodinger equations with explicit dependence on the spatial variable

被引:3
|
作者
Geng, Jiansheng [1 ]
Xue, Shuaishuai [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; KAM tori; Quasi-periodic solutions; QUASI-PERIODIC SOLUTIONS; COMPACT LIE-GROUPS; WAVE-EQUATIONS; HAMILTONIAN PERTURBATIONS; DIMENSIONAL TORI; THEOREM; CONSTRUCTION; SYSTEMS; NLS;
D O I
10.1016/j.jfa.2022.109430
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the two-dimensional nonlinear Schrodinger equation iu(t) -Delta u + |u|(2)u partial derivative integral (x, u, u )/partial derivative u = 0, t is an element of R, x is an element of T-2 with periodic boundary conditions. The nonlinearity f (x, u, u) =Sigma(j,l,j+l >= 6) a(jl)(x)u(j)u, a(jl) = a(lj) is a real analytic function 6 in a neighborhood of the origin. We obtain, through an infinite dimensional KAM theorem, a Whitney smooth family of small-amplitude quasi-periodic solutions. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:51
相关论文
共 50 条