Implicit-explicit multistep methods for general two-dimensional nonlinear Schrodinger equations

被引:18
|
作者
Gao, Yali [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
关键词
Nonlinear Schrodinger equation; Coupled nonlinear Schrodinger equations; Galerkin method; Implicit-explicit method; Finite element; DIFFERENTIAL-EQUATIONS; PARABOLIC EQUATIONS; GALERKIN METHODS; SOLITONS; FIBERS; WAVES; GAS;
D O I
10.1016/j.apnum.2016.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, implicit-explicit multistep Galerkin methods are studied for two-dimensional nonlinear Schrodinger equations and coupled nonlinear Schrodinger equations. The spatial discretization is based on Galerkin method using linear and quadratic basis functions on triangular and rectangular finite elements. And the implicit-explicit multistep method is used for temporal discretization. Linear and nonlinear numerical tests are presented to verify the validity and efficiency of the numerical methods. The numerical results record that the optimal order of the error in L-2 and L-infinity norm can be reached. (C) 2016 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 60
页数:20
相关论文
共 50 条
  • [41] Strong stability preserving implicit-explicit transformed general linear methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 176 : 206 - 225
  • [42] NONLINEAR STABILITY OF THE IMPLICIT-EXPLICIT METHODS FOR THE ALLEN-CAHN EQUATION
    Feng, Xinlong
    Song, Huailing
    Tang, Tao
    Yang, Jiang
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 679 - 695
  • [43] IMPLICIT-EXPLICIT RUNGE-KUTTA-ROSENBROCK METHODS WITH ERROR ANALYSIS FOR NONLINEAR STIFF DIFFERENTIAL EQUATIONS
    Huang, Bin
    Xiao, Aiguo
    Zhang, Gengen
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (04): : 555 - 576
  • [44] Implicit-explicit schemes for BGK kinetic equations
    Pieraccini, Sandra
    Puppo, Gabriella
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 32 (01) : 1 - 28
  • [45] On integrable two-dimensional generalizations of nonlinear Schrodinger type equations
    Mikhailov, AV
    Yamilov, RI
    PHYSICS LETTERS A, 1997, 230 (5-6) : 295 - 300
  • [46] IMPLICIT-EXPLICIT DIFFERENCE SCHEMES FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONSMOOTH SOLUTIONS
    Cao, Wanrong
    Zeng, Fanhai
    Zhang, Zhongqiang
    Karniadakis, George Em
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A3070 - A3093
  • [47] Local discontinuous Galerkin methods with implicit-explicit multistep time-marching for solving the nonlinear Cahn-Hilliard equation
    Shi, Hui
    Li, Ying
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 719 - 731
  • [48] Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations
    Li, Dongfang
    Zhang, Chengjian
    Wang, Wansheng
    Zhang, Yangjing
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) : 2711 - 2722
  • [49] Implicit-explicit second derivative general linear methods with strong stability preserving explicit part
    Moradi, A.
    Abdi, A.
    Hojjati, G.
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 23 - 45
  • [50] Implicit-explicit two-step peer methods with RK stability for implicit part
    Sharifi, Mohammad
    Abdi, Ali
    Hojjati, Gholamreza
    Mousavi, Aida
    NUMERICAL ALGORITHMS, 2025, 98 (04) : 2145 - 2170