Machine learning defect properties in Cd-based chalcogenides

被引:0
|
作者
Mannodi-Kanakkithodi, Arun [1 ]
Toriyama, Michael [1 ]
Sen, Fatih G. [1 ]
Davis, Michael J. [2 ]
Klie, Robert F. [3 ]
Chan, Maria K. Y. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
关键词
density functional theory; machine learning; CdTe; chalcogenides; point defects;
D O I
10.1109/pvsc40753.2019.8981266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Impurity energy levels in the band gap can have serious consequences for a semiconductor's performance as a photovoltaic absorber. Data-driven approaches can help accelerate the prediction of point defect properties in common semiconductors, and thus lead to the identification of potential deep lying impurity states. In this work, we use density functional theory (DFT) to compute defect formation energies and charge transition levels of hundreds of impurities in CdX chalcogenide compounds, where X = Te, Se or S. We apply machine learning techniques on the DFT data and develop on-demand predictive models for the formation energy and relevant transition levels of any impurity atom in any site. The trained ML models are general and accurate enough to predict the properties of any possible point defects in any Cd-based chalcogenide, as we prove by testing on a few selected defects in mixed chalcogen compounds CdTe0.5Se0.5 and CdSe0.5S0.5. The ML framework used in this work can be extended to any class of semiconductors.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 50 条
  • [31] Electronic structures and cohesion mechanism of Cd-based quasicrystals
    Ishii, Y
    Fujiwara, T
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2002, 312-14 : 494 - 497
  • [32] ANALYSIS OF A CSMA/CD-BASED PROTOCOL WITH DYNAMIC SEGMENTATION
    KO, CC
    LYE, KM
    CHUA, KC
    YAP, FT
    COMPUTER NETWORKS AND ISDN SYSTEMS, 1989, 16 (05): : 347 - 355
  • [33] CD-Based Indices for Link Prediction in Complex Network
    Wang, Tao
    Wang, Hongjue
    Wang, Xiaoxia
    PLOS ONE, 2016, 11 (01):
  • [34] Structural and Magnetic Ordering in Cd-based Crystalline Approximants
    Tamura, R.
    Gomez, C. P.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2012, 68 : S64 - S64
  • [35] A Cd-based MOF crystal vessel for the synthesis of interhalogens
    Zhang, Min-Jie
    Ge, Yu
    Cao, Chen
    Xue, Xin-Ran
    Li, Qiu-Yi
    Liu, Qi
    Lang, Jian-Ping
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2023, 42 (09)
  • [36] The influence of azide and imidazole on the properties of Mn- and Cd-based networks: conductivity and nonlinear phenomena
    Trzebiatowska, Monika
    Kowalska, Dorota A.
    Cizman, Agnieszka
    Wojcik, Natalia A.
    Barczynski, Ryszard J.
    Pikul, Adam
    Zareba, Jan K.
    Palewicz, Marcin
    Piasecki, Tomasz
    Roleder, Krystian
    Gusowski, Marek
    Maczka, Miroslaw
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (37) : 15119 - 15136
  • [37] Cd-based Ohmic contact materials to p-ZnSe
    Koide, Y
    Hashimoto, K
    Ishikawa, H
    Tsukui, K
    Oku, T
    Murakami, M
    Teraguchi, N
    Tomomura, Y
    Suzuki, A
    JOURNAL OF CRYSTAL GROWTH, 1996, 159 (1-4) : 709 - 713
  • [38] CD-based image archival and management on a hybrid radiology intranet
    Robert D. Cox
    Christopher J. Henri
    Patrice M. Bret
    Journal of Digital Imaging, 1997, 10 : 168 - 170
  • [39] Synthesis, Photochromism and Switchable Photoluminescence of a Cd-based Metalloviologen Complex
    孙径
    於曹铭
    蔡丽珍
    郭国聪
    ChineseJournalofStructuralChemistry, 2021, 40 (09) : 1177 - 1182
  • [40] Wood Defect Detection Based on Depth Extreme Learning Machine
    Yang, Yutu
    Zhou, Xiaolin
    Liu, Ying
    Hu, Zhongkang
    Ding, Fenglong
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 14