Machine learning defect properties in Cd-based chalcogenides

被引:0
|
作者
Mannodi-Kanakkithodi, Arun [1 ]
Toriyama, Michael [1 ]
Sen, Fatih G. [1 ]
Davis, Michael J. [2 ]
Klie, Robert F. [3 ]
Chan, Maria K. Y. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
关键词
density functional theory; machine learning; CdTe; chalcogenides; point defects;
D O I
10.1109/pvsc40753.2019.8981266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Impurity energy levels in the band gap can have serious consequences for a semiconductor's performance as a photovoltaic absorber. Data-driven approaches can help accelerate the prediction of point defect properties in common semiconductors, and thus lead to the identification of potential deep lying impurity states. In this work, we use density functional theory (DFT) to compute defect formation energies and charge transition levels of hundreds of impurities in CdX chalcogenide compounds, where X = Te, Se or S. We apply machine learning techniques on the DFT data and develop on-demand predictive models for the formation energy and relevant transition levels of any impurity atom in any site. The trained ML models are general and accurate enough to predict the properties of any possible point defects in any Cd-based chalcogenide, as we prove by testing on a few selected defects in mixed chalcogen compounds CdTe0.5Se0.5 and CdSe0.5S0.5. The ML framework used in this work can be extended to any class of semiconductors.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 50 条
  • [21] Positron Energy Levels in Cd-Based Semiconductors
    B.Abbar
    S.Mécabih
    S.Amari
    N.Benosman
    B.Bouhafs
    CommunicationsinTheoreticalPhysics, 2013, 59 (06) : 756 - 762
  • [22] Energetics of Cd-based binary liquid alloys
    Adhikari, D.
    Singh, B. P.
    Jha, I. S.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (11) : 1362 - 1367
  • [23] Modeling of defect formation in lead chalcogenides and their properties
    Chesnokova, DB
    Kamchatka, MI
    INORGANIC MATERIALS, 2001, 37 (02) : 111 - 118
  • [24] Modeling of Defect Formation in Lead Chalcogenides and Their Properties
    D. B. Chesnokova
    M. I. Kamchatka
    Inorganic Materials, 2001, 37 : 111 - 118
  • [25] Electronic structures of Cd-based quasicrystals and approximants
    Ishii, Y
    Fujiwara, T
    JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 342 (1-2) : 343 - 347
  • [26] Positron Energy Levels in Cd-Based Semiconductors
    Abbar, B.
    Mecabih, S.
    Amari, S.
    Benosman, N.
    Bouhafs, B.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (06) : 756 - 762
  • [27] Photomagnetoelectric effect of Cd-based detector materials
    Suzuki, K
    Seto, S
    Sawada, T
    Imai, K
    2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 4470 - 4472
  • [28] CSMA/CD-BASED PROTOCOL WITH DYNAMIC SEGMENTATION
    CHUA, KC
    LYE, KM
    KO, CC
    COMPUTER COMMUNICATIONS, 1986, 9 (05) : 234 - 240
  • [29] Migration, Formation, and Growth of Pure Cd Whiskers in Cd-Based Compounds
    D. Wu
    T.A. Lograsso
    J.W. Anderegg
    Journal of Electronic Materials, 2007, 36 : 555 - 561
  • [30] Migration, formation, and growth of pure Cd whiskers in Cd-based compounds
    Wu, D.
    Lograsso, T. A.
    Anderegg, J. W.
    JOURNAL OF ELECTRONIC MATERIALS, 2007, 36 (05) : 555 - 561