Machine learning defect properties in Cd-based chalcogenides

被引:0
|
作者
Mannodi-Kanakkithodi, Arun [1 ]
Toriyama, Michael [1 ]
Sen, Fatih G. [1 ]
Davis, Michael J. [2 ]
Klie, Robert F. [3 ]
Chan, Maria K. Y. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
关键词
density functional theory; machine learning; CdTe; chalcogenides; point defects;
D O I
10.1109/pvsc40753.2019.8981266
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Impurity energy levels in the band gap can have serious consequences for a semiconductor's performance as a photovoltaic absorber. Data-driven approaches can help accelerate the prediction of point defect properties in common semiconductors, and thus lead to the identification of potential deep lying impurity states. In this work, we use density functional theory (DFT) to compute defect formation energies and charge transition levels of hundreds of impurities in CdX chalcogenide compounds, where X = Te, Se or S. We apply machine learning techniques on the DFT data and develop on-demand predictive models for the formation energy and relevant transition levels of any impurity atom in any site. The trained ML models are general and accurate enough to predict the properties of any possible point defects in any Cd-based chalcogenide, as we prove by testing on a few selected defects in mixed chalcogen compounds CdTe0.5Se0.5 and CdSe0.5S0.5. The ML framework used in this work can be extended to any class of semiconductors.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 50 条
  • [1] Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides
    Arun Mannodi-Kanakkithodi
    Michael Y. Toriyama
    Fatih G. Sen
    Michael J. Davis
    Robert F. Klie
    Maria K. Y. Chan
    npj Computational Materials, 6
  • [2] Defect energy levels in Cd-based compounds
    Castaldini, A
    Cavallini, A
    Fraboni, B
    Piqueras, J
    Polenta, L
    DEFECT RECOGNITION AND IMAGE PROCESSING IN SEMICONDUCTORS 1995, 1996, 149 : 115 - 120
  • [3] Electronic structures and defect physics of Cd-based semiconductors
    Wei, SH
    Zhang, SB
    CONFERENCE RECORD OF THE TWENTY-EIGHTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 2000, 2000, : 483 - 486
  • [4] Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides (vol 6, 39, 2020)
    Mannodi-Kanakkithodi, Arun
    Toriyama, Michael Y.
    Sen, Fatih G.
    Davis, Michael J.
    Klie, Robert F.
    Chan, Maria K. Y.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [5] Comprehensive DFT investigation of Cd-based spinel chalcogenides for spintronic and solar cells devices
    Sohaib, M. U.
    Abid, Kamran
    Noor, N. A.
    Khan, M. Aslam
    Neffati, R.
    Abdel-Hafez, Shams H.
    Hussein, Enas E.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 4683 - 4693
  • [6] Preparation and Luminescence Properties of Cd-based MOF/Dye Composites
    Liu Mingzhu
    Niu Chuanwen
    Zhang Huanhuan
    Xing Yanjun
    JOURNAL OF INORGANIC MATERIALS, 2020, 35 (10) : 1123 - 1129
  • [8] Photovoltaic properties of cd-based ionic liquid crystals with semiconductor nanoparticles
    Zhulai, D.
    Kovalchuk, A.
    Bugaychuk, S.
    Klimusheva, G.
    Mirnaya, T.
    Vitusevich, S.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2023, 750 (01) : 32 - 41
  • [9] Redesigning CD-based self-learning modules in geriatric medicine
    Teasdale, T
    Madden, R
    Sebastian, R
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2000, 48 (08) : S135 - S135
  • [10] A CD-based animal welfare syllabus
    不详
    ANIMAL WELFARE, 2004, 13 (01) : 95 - 95