Machine Learning of Infant Spontaneous Movements for the Early Prediction of Cerebral Palsy: A Multi-Site Cohort Study

被引:63
|
作者
Ihlen, Espen A. F. [1 ]
Stoen, Ragnhild [2 ,3 ]
Boswell, Lynn [4 ]
de Regnier, Raye-Ann [4 ,5 ]
Fjortoft, Toril [3 ,6 ]
Gaebler-Spira, Deborah [5 ,7 ]
Labori, Cathrine [8 ]
Loennecken, Marianne C. [9 ]
Msall, Michael E. [10 ,11 ]
Moinichen, Unn I. [9 ]
Peyton, Colleen [5 ,12 ]
Schreiber, Michael D. [10 ]
Silberg, Inger E. [9 ]
Songstad, Nils T. [13 ]
Vagen, Randi T. [6 ]
Oberg, Gunn K. [8 ,14 ]
Adde, Lars [3 ,6 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Neuromed & Movement Sci, N-7491 Trondheim, Norway
[2] Trondheim Reg & Univ Hosp, St Olavs Hosp, Dept Neonatol, N-7006 Trondheim, Norway
[3] Norwegian Univ Sci & Technol, Dept Clin & Mol Med, N-7491 Trondheim, Norway
[4] Ann & Robert H Lurie Childrens Hosp Chicago, Chicago, IL 60611 USA
[5] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[6] Trondheim Reg & Univ Hosp, St Olavs Hosp, Clin Clin Serv, N-7006 Trondheim, Norway
[7] Shirley Ryan AbilityLab, Chicago, IL 60611 USA
[8] Univ Hosp North Norway, Dept Clin Therapeut Serv, N-9038 Tromso, Norway
[9] Oslo Univ Hosp, Div Paediat & Adolescent Med, Dept Pediat, N-0372 Oslo, Norway
[10] Univ Chicago Med, Comer Childrens Hosp, Sect Dev & Behav Pediat, Chicago, IL 60637 USA
[11] Univ Chicago, Kennedy Res Ctr Intellectual & Neurodev Disabil, Chicago, IL 60637 USA
[12] Comer Childrens Hosp, Dept Pediat, Dept Phys Therapy & Human Movement Sci, Chicago, IL 60637 USA
[13] Univ Hosp North Norway, Dept Pediat & Adolescent Med, N-9038 Tromso, Norway
[14] UiT Arctic Univ Norway, Fac Hlth Sci, Dept Hlth & Care Sci, N-9019 Tromso, Norway
关键词
cerebral palsy; premature infants; general movement assessment; machine learning; GROSS MOTOR FUNCTION; GENERAL MOVEMENTS; VIDEO ANALYSIS; INTERVENTION; DIAGNOSIS; CHILDREN;
D O I
10.3390/jcm9010005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Early identification of cerebral palsy (CP) during infancy will provide opportunities for early therapies and treatments. The aim of the present study was to present a novel machine-learning model, the Computer-based Infant Movement Assessment (CIMA) model, for clinically feasible early CP prediction based on infant video recordings. Methods: The CIMA model was designed to assess the proportion (%) of CP risk-related movements using a time-frequency decomposition of the movement trajectories of the infant's body parts. The CIMA model was developed and tested on video recordings from a cohort of 377 high-risk infants at 9-15 weeks corrected age to predict CP status and motor function (ambulatory vs. non-ambulatory) at mean 3.7 years age. The performance of the model was compared with results of the general movement assessment (GMA) and neonatal imaging. Results: The CIMA model had sensitivity (92.7%) and specificity (81.6%), which was comparable to observational GMA or neonatal cerebral imaging for the prediction of CP. Infants later found to have non-ambulatory CP had significantly more CP risk-related movements (median: 92.8%, p = 0.02) compared with those with ambulatory CP (median: 72.7%). Conclusion: The CIMA model may be a clinically feasible alternative to observational GMA.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Students' workplace learning in two clerkship models: a multi-site observational study
    O'Brien, Bridget C.
    Poncelet, Ann N.
    Hansen, Lori
    Hirsh, David A.
    Ogur, Barbara
    Alexander, Erik K.
    Krupat, Edward
    Hauer, Karen E.
    MEDICAL EDUCATION, 2012, 46 (06) : 613 - 624
  • [42] THE EFFECTIVENESS OF THE LORAZEPAM CHALLENGE TEST IN PEDIATRIC CATATONIA: A MULTI-SITE RETROSPECTIVE COHORT STUDY
    Luccarelli, James
    JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2024, 63 (10): : S318 - S318
  • [43] Children health determinants in a multi-site cohort of immigrant families in Spain (PELFI Study)
    Ferrer, L.
    Gaillardin, F.
    Cayuela, A.
    Felt, E.
    Hernando, C.
    Collazos, F.
    Ronda, E.
    Casabona, J.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2016, 26
  • [44] Multi-site chronic pain and cognitive performance: a prospective cohort study in the UK Biobank
    Kelleher, E.
    Schrepf, A.
    Tracey, I.
    Soni, A.
    BRITISH JOURNAL OF ANAESTHESIA, 2023, 131 (03) : E83 - E84
  • [45] CHARACTERISTICS OF EOSINOPHILIC ESOPHAGITIS IN A DIVERSE COHORT OF PEDIATRIC AND ADULT PATIENTS: A MULTI-SITE STUDY
    Beveridge, Claire
    Karami, Adam
    Thanawala, Shivani U.
    Martin, Lisa J.
    Yancey, Brittany
    Falk, Gary W.
    Lynch, Kristle L.
    Aceves, Seema S.
    Dellon, Evan S.
    Chehade, Mirna
    Spergel, Jonathan
    Leung, John
    Gonsalves, Nirmala
    Hirano, Ikuo
    Katzka, David A.
    Khoury, Paneez
    Pesek, Robert
    Davis, Carla
    Peterson, Kathryn A.
    Hiremath, Girish
    Wechsler, Joshua B.
    Collins, Margaret H.
    Menard-Katcher, Paul
    Gupta, Sandeep K.
    Furuta, Glenn
    Rothenberg, Marc E.
    Bailey, Dominique D.
    Muir, Amanda B.
    Whelan, Kelly A.
    GASTROENTEROLOGY, 2021, 160 (06) : S252 - S252
  • [46] Prediction of spontaneous preterm birth using supervised machine learning on metabolomic data: A case-cohort study
    Al Ghadban, Yasmina
    Du, Yuheng
    Charnock-Jones, D. Stephen
    Garmire, Lana X.
    Smith, Gordon C. S.
    Sovio, Ulla
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2024, 131 (07) : 908 - 916
  • [47] Distinguishing between paediatric brain tumour types using multi- parametric magnetic resonance imaging and machine learning: A multi-site study
    Grist, James T.
    Withey, Stephanie
    MacPherson, Lesley
    Oates, Adam
    Powell, Stephen
    Novak, Jan
    Abernethy, Laurence
    Pizer, Barry
    Grundy, Richard
    Bailey, Simon
    Mitra, Dipayan
    Arvanitis, Theodoros N.
    Auer, Dorothee P.
    Avula, Shivaram
    Peet, Andrew C.
    NEUROIMAGE-CLINICAL, 2020, 25
  • [48] Clinical prediction survival of advanced cancer patients by palliative care: a multi-site study
    Thai, Vincent
    Ghosh, Sunita
    Tarumi, Yoko
    Wolch, Gary
    Fassbender, Konrad
    Lau, Francis
    DeKock, Ingrid
    Mirosseini, Mehrnoush
    Quan, Hue
    Yang, Ju
    Mayo, Patrick R.
    INTERNATIONAL JOURNAL OF PALLIATIVE NURSING, 2016, 22 (08) : 380 - 387
  • [49] Prospective prediction of first lifetime suicide attempts in a multi-site study of substance users
    Trout, Zoe M.
    Hernandez, Evelyn M.
    Kleiman, Evan M.
    Liu, Richard T.
    JOURNAL OF PSYCHIATRIC RESEARCH, 2017, 84 : 35 - 40
  • [50] Lessons learned in implementing the Low Birthweight Infant Feeding Exploration study: A large, multi-site observational study
    Vernekar, Sunil S.
    Somji, Sarah
    Msimuko, Kingsly
    Yogeshkumar, S.
    Nayak, Rashmita B.
    Nabapure, Shilpa
    Kusagur, Varun B.
    Saidi, Friday
    Phiri, Melda
    Kafansiyanji, Eddah
    Sudfeld, Christopher R.
    Kisenge, Rodrick
    Moshiro, Robert
    Tuller, Danielle E.
    Vesel, Linda
    Semrau, Katherine E. A.
    Dhaded, Sangappa M.
    Bellad, Roopa M.
    Mvalo, Tisungane
    Manji, Karim
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2023, : 99 - 106