Machine Learning of Infant Spontaneous Movements for the Early Prediction of Cerebral Palsy: A Multi-Site Cohort Study

被引:63
|
作者
Ihlen, Espen A. F. [1 ]
Stoen, Ragnhild [2 ,3 ]
Boswell, Lynn [4 ]
de Regnier, Raye-Ann [4 ,5 ]
Fjortoft, Toril [3 ,6 ]
Gaebler-Spira, Deborah [5 ,7 ]
Labori, Cathrine [8 ]
Loennecken, Marianne C. [9 ]
Msall, Michael E. [10 ,11 ]
Moinichen, Unn I. [9 ]
Peyton, Colleen [5 ,12 ]
Schreiber, Michael D. [10 ]
Silberg, Inger E. [9 ]
Songstad, Nils T. [13 ]
Vagen, Randi T. [6 ]
Oberg, Gunn K. [8 ,14 ]
Adde, Lars [3 ,6 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Neuromed & Movement Sci, N-7491 Trondheim, Norway
[2] Trondheim Reg & Univ Hosp, St Olavs Hosp, Dept Neonatol, N-7006 Trondheim, Norway
[3] Norwegian Univ Sci & Technol, Dept Clin & Mol Med, N-7491 Trondheim, Norway
[4] Ann & Robert H Lurie Childrens Hosp Chicago, Chicago, IL 60611 USA
[5] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[6] Trondheim Reg & Univ Hosp, St Olavs Hosp, Clin Clin Serv, N-7006 Trondheim, Norway
[7] Shirley Ryan AbilityLab, Chicago, IL 60611 USA
[8] Univ Hosp North Norway, Dept Clin Therapeut Serv, N-9038 Tromso, Norway
[9] Oslo Univ Hosp, Div Paediat & Adolescent Med, Dept Pediat, N-0372 Oslo, Norway
[10] Univ Chicago Med, Comer Childrens Hosp, Sect Dev & Behav Pediat, Chicago, IL 60637 USA
[11] Univ Chicago, Kennedy Res Ctr Intellectual & Neurodev Disabil, Chicago, IL 60637 USA
[12] Comer Childrens Hosp, Dept Pediat, Dept Phys Therapy & Human Movement Sci, Chicago, IL 60637 USA
[13] Univ Hosp North Norway, Dept Pediat & Adolescent Med, N-9038 Tromso, Norway
[14] UiT Arctic Univ Norway, Fac Hlth Sci, Dept Hlth & Care Sci, N-9019 Tromso, Norway
关键词
cerebral palsy; premature infants; general movement assessment; machine learning; GROSS MOTOR FUNCTION; GENERAL MOVEMENTS; VIDEO ANALYSIS; INTERVENTION; DIAGNOSIS; CHILDREN;
D O I
10.3390/jcm9010005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Early identification of cerebral palsy (CP) during infancy will provide opportunities for early therapies and treatments. The aim of the present study was to present a novel machine-learning model, the Computer-based Infant Movement Assessment (CIMA) model, for clinically feasible early CP prediction based on infant video recordings. Methods: The CIMA model was designed to assess the proportion (%) of CP risk-related movements using a time-frequency decomposition of the movement trajectories of the infant's body parts. The CIMA model was developed and tested on video recordings from a cohort of 377 high-risk infants at 9-15 weeks corrected age to predict CP status and motor function (ambulatory vs. non-ambulatory) at mean 3.7 years age. The performance of the model was compared with results of the general movement assessment (GMA) and neonatal imaging. Results: The CIMA model had sensitivity (92.7%) and specificity (81.6%), which was comparable to observational GMA or neonatal cerebral imaging for the prediction of CP. Infants later found to have non-ambulatory CP had significantly more CP risk-related movements (median: 92.8%, p = 0.02) compared with those with ambulatory CP (median: 72.7%). Conclusion: The CIMA model may be a clinically feasible alternative to observational GMA.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Predictive validity of spontaneous early infant movement for later cerebral palsy: a systematic review
    Kwong, Amanda K. L.
    Fitzgerald, Tara L.
    Doyle, Lex W.
    Cheong, Jeanie L. Y.
    Spittle, Alicia J.
    DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2018, 60 (05): : 480 - 489
  • [12] Hyperspectral reflectance and machine learning for multi-site monitoring of cotton growth
    Flynn, K. Colton
    Witt, Travis W.
    Baath, Gurjinder S.
    Chinmayi, H. K.
    Smith, Douglas R.
    Gowda, Prasanna H.
    Ashworth, Amanda J.
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [13] Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis
    Roy Adams
    Katharine E. Henry
    Anirudh Sridharan
    Hossein Soleimani
    Andong Zhan
    Nishi Rawat
    Lauren Johnson
    David N. Hager
    Sara E. Cosgrove
    Andrew Markowski
    Eili Y. Klein
    Edward S. Chen
    Mustapha O. Saheed
    Maureen Henley
    Sheila Miranda
    Katrina Houston
    Robert C. Linton
    Anushree R. Ahluwalia
    Albert W. Wu
    Suchi Saria
    Nature Medicine, 2022, 28 : 1455 - 1460
  • [14] Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis
    Adams, Roy
    Henry, Katharine E.
    Sridharan, Anirudh
    Soleimani, Hossein
    Zhan, Andong
    Rawat, Nishi
    Johnson, Lauren
    Hager, David N.
    Cosgrove, Sara E.
    Markowski, Andrew
    Klein, Eili Y.
    Chen, Edward S.
    Saheed, Mustapha O.
    Henley, Maureen
    Miranda, Sheila
    Houston, Katrina
    Linton, Robert C.
    Ahluwalia, Anushree R.
    Wu, Albert W.
    Saria, Suchi
    NATURE MEDICINE, 2022, 28 (07) : 1455 - +
  • [15] Towards Long-Term Learning to Motivate Spontaneous Infant Kicking for Studies in Early Detection of Cerebral Palsy using a Robotic System: A Preliminary Study
    Victor, Emeli
    Ayanna, Howard
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1249 - 1254
  • [16] Identifying autism spectrum disorder based on machine learning for multi-site fMRI
    Kang, Li
    Chen, Mubin
    Huang, Jianjun
    Xu, Jinyang
    JOURNAL OF NEUROSCIENCE METHODS, 2025, 416
  • [17] Multi-Site Mild Traumatic Brain Injury Classification with Machine Learning and Harmonization
    Bostami, Biozid
    Espinoza, Flor A.
    van der Horn, Harm J.
    van der Naalt, Joukje
    Calhoun, Vince D.
    Vergara, Victor M.
    2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2022, : 537 - 540
  • [18] COMMUTE: Communication-efficient transfer learning for multi-site risk prediction
    Gu, Tian
    Lee, Phil H.
    Duan, Rui
    JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 137
  • [19] Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study
    Adekkanattu, Prakash
    Rasmussen, Luke V.
    Pacheco, Jennifer A.
    Kabariti, Joseph
    Stone, Daniel J.
    Yu, Yue
    Jiang, Guoqian
    Luo, Yuan
    Brandt, Pascal S.
    Xu, Zhenxing
    Vekaria, Veer
    Xu, Jie
    Wang, Fei
    Benda, Natalie C.
    Peng, Yifan
    Goyal, Parag
    Ahmad, Faraz S.
    Pathak, Jyotishman
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [20] Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study
    Prakash Adekkanattu
    Luke V. Rasmussen
    Jennifer A. Pacheco
    Joseph Kabariti
    Daniel J. Stone
    Yue Yu
    Guoqian Jiang
    Yuan Luo
    Pascal S. Brandt
    Zhenxing Xu
    Veer Vekaria
    Jie Xu
    Fei Wang
    Natalie C. Benda
    Yifan Peng
    Parag Goyal
    Faraz S. Ahmad
    Jyotishman Pathak
    Scientific Reports, 13