A (2,3) quantum threshold scheme based on Greenberger-Horne-Zeilinger state

被引:6
|
作者
Li Yuan [1 ]
Zeng Gui-Hua [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Lab Quantum Informat & Communicat Secur, Shanghai 200240, Peoples R China
来源
CHINESE PHYSICS | 2007年 / 16卷 / 10期
关键词
quantum threshold; controlled-not manipulation; secret sharing; GHZ state;
D O I
10.1088/1009-1963/16/10/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, by using properties of quantum controlled-not manipulation and entanglement states, we have designed a novel (2, 3) quantum threshold scheme based on the Greenberger- Horne -Zeilinger (GHZ) state. The proposed scheme involves two phases, i.e. a secret sharing phase and a secret phase. Detailed proofs show that the proposed scheme is of unconditional security. Since the secret is shared among three participants, the proposed scheme may be applied to quantum key distribution and secret sharing.
引用
收藏
页码:2875 / 2879
页数:5
相关论文
共 50 条
  • [21] Entanglement and nonlocality for generalized Greenberger-Horne-Zeilinger state
    Wang Xiao-Qin
    Lu Huai-Xin
    Zhao Jia-Qiang
    ACTA PHYSICA SINICA, 2011, 60 (11)
  • [22] Quantum Steganography via Greenberger-Horne-Zeilinger GHZ4 State
    El Allati, A.
    Medeni, M. B. Ould
    Hassouni, Y.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (04) : 577 - 582
  • [23] Generation of the quadripartite Greenberger-Horne-Zeilinger entangled state in quantum beat lasers
    Wang, Fei
    LASER PHYSICS LETTERS, 2013, 10 (12)
  • [24] Quantum Steganography via Greenberger-Horne-Zeilinger GHZ4 State
    A.El Allati
    M.B.Ould Medeni
    Y.Hassouni
    Communications in Theoretical Physics, 2012, 57 (04) : 577 - 582
  • [25] Continuous variable quantum conference network with a Greenberger-Horne-Zeilinger entangled state
    Qin, Y. U. E.
    Ma, J. I. N. G. X. U.
    Cheng, J. I. A. L. I. N.
    Yan, Z. H. I. H. U. I.
    Jia, X. I. A. O. J. U. N.
    PHOTONICS RESEARCH, 2023, 11 (04) : 533 - 540
  • [26] Multisetting Greenberger-Horne-Zeilinger paradoxes
    Tang, Weidong
    Yu, Sixia
    Oh, C. H.
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [27] Feasible preparation of polarization hybrid Greenberger-Horne-Zeilinger state based on optimal quantum scissors
    Cui, Shi-He
    Gu, Shi-Pu
    Wang, Xing-Fu
    Zhou, Lan
    Sheng, Yu-Bo
    QUANTUM INFORMATION PROCESSING, 2025, 24 (02)
  • [28] Optical test on Greenberger-Horne-Zeilinger paradox of quantum nonlocality
    Lee, J
    Lee, SW
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 : S181 - S186
  • [29] Relativistic quantum nonlocality for the three-qubit Greenberger-Horne-Zeilinger state
    Moradi, Shahpoor
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [30] Multisetting Greenberger-Horne-Zeilinger theorem
    Ryu, Junghee
    Lee, Changhyoup
    Yin, Zhi
    Rahaman, Ramij
    Angelakis, Dimitris G.
    Lee, Jinhyoung
    Zukowski, Marek
    PHYSICAL REVIEW A, 2014, 89 (02):