Continuous variable quantum conference network with a Greenberger-Horne-Zeilinger entangled state

被引:4
|
作者
Qin, Y. U. E. [1 ]
Ma, J. I. N. G. X. U. [1 ]
Cheng, J. I. A. L. I. N. [1 ]
Yan, Z. H. I. H. U. I. [1 ,2 ]
Jia, X. I. A. O. J. U. N. [1 ,2 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
KEY DISTRIBUTION; COMMUNICATION; TELEPORTATION;
D O I
10.1364/PRJ.481168
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum conference (QC) is a cryptographic task in secure communications that involves more than two users wishing to establish identical secret keys among N users. The Greenberger-Horne-Zeilinger (GHZ) entangled state is the basic resource for quantum cryptographic communication due to the existence of multipartite quan-tum correlations. An unconditional and efficient quantum network can be established with a continuous variable (CV) GHZ entangled state because of its deterministic entanglement. Here, we report an implementation of QC scheme using a CV multipartite GHZ entangled state. The submodes of a quadripartite GHZ entangled state are distributed to four spatially separated users. The proposed QC scheme is proved to be secure even when the entanglement is distributed through lossy quantum channels and the collective Gaussian attacks are in the all lossy channels. The presented QC scheme has the capability to be directly extended to a larger scale quantum network by using entangled states with more submodes. (c) 2023 Chinese Laser Press
引用
收藏
页码:533 / 540
页数:8
相关论文
共 50 条
  • [1] Continuous variable quantum conference network with a Greenberger–Horne–Zeilinger entangled state
    YUE QIN
    JINGXU MA
    DI ZHAO
    JIALIN CHENG
    ZHIHUI YAN
    XIAOJUN JIA
    Photonics Research, 2023, 11 (04) : 533 - 540
  • [2] Generation of the quadripartite Greenberger-Horne-Zeilinger entangled state in quantum beat lasers
    Wang, Fei
    LASER PHYSICS LETTERS, 2013, 10 (12)
  • [3] Greenberger-Horne-Zeilinger nonlocality for continuous-variable systems
    Chen, ZB
    Zhang, YD
    PHYSICAL REVIEW A, 2002, 65 (04):
  • [4] Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state
    Yu, YF
    Feng, J
    Zhan, MS
    PHYSICAL REVIEW A, 2003, 68 (02):
  • [5] Quantification of quantum steering in a Gaussian Greenberger-Horne-Zeilinger state
    Deng, Xiaowei
    Tian, Caixing
    Wang, Meihong
    Qin, Zhongzhong
    Su, Xiaolong
    OPTICS COMMUNICATIONS, 2018, 421 : 14 - 18
  • [6] Greenberger-Horne-Zeilinger paradox for continuous variables
    Massar, S
    Pironio, S
    PHYSICAL REVIEW A, 2001, 64 (06): : 5
  • [7] Greenberger-Horne-Zeilinger paradox for continuous variables
    Massar, Serge
    Pironio, Stefano
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (06): : 1 - 062108
  • [8] Entangled Bell and Greenberger-Horne-Zeilinger states of excitons in coupled quantum dots
    Quiroga, L
    Johnson, NF
    PHYSICAL REVIEW LETTERS, 1999, 83 (11) : 2270 - 2273
  • [9] Optimal distillation of a Greenberger-Horne-Zeilinger state
    Acín, A
    Jané, E
    Dür, W
    Vidal, G
    PHYSICAL REVIEW LETTERS, 2000, 85 (22) : 4811 - 4814
  • [10] Quantum Distributed Ballot Scheme Based on Greenberger-Horne-Zeilinger State
    Shi Rong-Hua
    Wu Ying
    Guo Ying
    Zeng Gui-Hua
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (02) : 257 - 262