Geodesic deviation at higher orders via covariant bitensors

被引:25
|
作者
Vines, Justin [1 ]
机构
[1] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Geodesic deviation; Jacobi equation; Bitensors; GENERALIZED JACOBI EQUATION; GRAVITATIONAL-FIELD; POINT-SEPARATION; RELATIVE MOTION; TEST PARTICLES; DYNAMICS; RADIATION; EPICYCLES; SPACETIME;
D O I
10.1007/s10714-015-1901-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review a simple but instructive application of the formalism of covariant bitensors, to use a deviation vector field along a fiducial geodesic to describe a neighboring worldline, in an exact and manifestly covariant manner, via the exponential map. Requiring the neighboring worldline to be a geodesic leads to the usual linear geodesic deviation equation for the deviation vector, plus corrections at higher order in the deviation and relative velocity. We show how these corrections can be efficiently computed to arbitrary orders via covariant bitensor expansions, deriving a form of the geodesic deviation equation valid to all orders, and producing its explicit expanded form through fourth order. We also discuss the generalized Jacobi equation, action principles for the higher-order geodesic deviation equations, results useful for describing accelerated neighboring worldlines, and the formal general solution to the geodesic deviation equation through second order.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] GEODESIC DEVIATION IN THE SCHWARZSCHILD SPACE-TIME
    BAZANSKI, SL
    JARANOWSKI, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (08) : 1794 - 1803
  • [42] GEODESIC DEVIATION METHOD IN PRECISE COSMIC GRAVIMETRY
    KHLEBNIKOV, VI
    DOKLADY AKADEMII NAUK SSSR, 1989, 306 (04): : 810 - 812
  • [43] Generalized geodesic deviation in de Sitter spacetime
    Waldstein, Isaac Raj
    Brown, J. David
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (11)
  • [44] Geodesic deviation equation in f(R) gravity
    Guarnizo, Alejandro
    Castaneda, Leonardo
    Tejeiro, Juan M.
    GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (10) : 2713 - 2728
  • [45] Geodesic deviation equation in f (Q)-gravity
    Beh, Jing-Theng
    Loo, Tee-How
    De, Avik
    CHINESE JOURNAL OF PHYSICS, 2022, 77 : 1551 - 1560
  • [46] Geodesic Deviation Equation in I⟩CDM Gravity
    Ganiou, M. G.
    Salako, Ines G.
    Houndjo, M. J. S.
    Tossa, J.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (09) : 3954 - 3972
  • [47] Geodesic deviation in Saez-Ballester theory
    Rasouli, S. M. M.
    Sakellariadou, M.
    Moniz, Paulo Vargas
    PHYSICS OF THE DARK UNIVERSE, 2022, 37
  • [48] Geodesic Deviation and Particle Creation in Curved Spacetimes
    Mironov, A.
    Morozov, A.
    Tomaras, T. N.
    JETP LETTERS, 2012, 94 (11) : 795 - 799
  • [49] Charmonium production via fragmentation at higher orders in alpha(s)
    Ernstrom, P
    Hoyer, P
    Vanttinen, M
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 73 (01): : 119 - 124
  • [50] APPROXIMATING ITO INTEGRALS OF DIFFERENTIAL FORMS AND GEODESIC DEVIATION
    DARLING, RWR
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 65 (04): : 563 - 572