Geodesic deviation at higher orders via covariant bitensors

被引:25
|
作者
Vines, Justin [1 ]
机构
[1] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Geodesic deviation; Jacobi equation; Bitensors; GENERALIZED JACOBI EQUATION; GRAVITATIONAL-FIELD; POINT-SEPARATION; RELATIVE MOTION; TEST PARTICLES; DYNAMICS; RADIATION; EPICYCLES; SPACETIME;
D O I
10.1007/s10714-015-1901-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review a simple but instructive application of the formalism of covariant bitensors, to use a deviation vector field along a fiducial geodesic to describe a neighboring worldline, in an exact and manifestly covariant manner, via the exponential map. Requiring the neighboring worldline to be a geodesic leads to the usual linear geodesic deviation equation for the deviation vector, plus corrections at higher order in the deviation and relative velocity. We show how these corrections can be efficiently computed to arbitrary orders via covariant bitensor expansions, deriving a form of the geodesic deviation equation valid to all orders, and producing its explicit expanded form through fourth order. We also discuss the generalized Jacobi equation, action principles for the higher-order geodesic deviation equations, results useful for describing accelerated neighboring worldlines, and the formal general solution to the geodesic deviation equation through second order.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Geodesic deviation in the black string spacetime
    Culetu, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2001, 10 (06): : 791 - 797
  • [22] KILLING TENSORS AND THE GEODESIC DEVIATION EQUATION
    DOLAN, P
    SAFKO, JL
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1984, 422 (MAR) : 340 - 340
  • [23] Geodesic deviation equation approach to chaos
    Szczesny, J
    Dobrowolski, T
    ANNALS OF PHYSICS, 1999, 277 (02) : 161 - 176
  • [24] Schwarzschild lensing from geodesic deviation
    Li, Zhao
    Guo, Xiao
    Liu, Tan
    Zhu, Tao
    Zhao, Wen
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2025, (01):
  • [25] GEODESIC DEVIATION AND ABSOLUTE MOTION IN COSMOLOGY
    NOERDLINGER, PD
    ASTROPHYSICAL JOURNAL, 1978, 220 (02): : 373 - 375
  • [26] Spacetime geometry fluctuations and geodesic deviation
    Vieira, H. S.
    Ford, L. H.
    Bezerra, V. B.
    PHYSICAL REVIEW D, 2018, 98 (08)
  • [27] Geodesic deviation equation in Bianchi cosmologies
    Caceres, D. L.
    Castaneda, L.
    Tejeiro, J. M.
    SPANISH RELATIVITY MEETING (ERE 2009), 2010, 229
  • [28] Gravitational waves in f (Q) non-metric gravity via geodesic deviation
    Capozziello, Salvatore
    Capriolo, Maurizio
    Nojiri, Shin'ichi
    PHYSICS LETTERS B, 2024, 850
  • [29] Higher covariant derivatives
    A. V. Gavrilov
    Siberian Mathematical Journal, 2008, 49 : 997 - 1007
  • [30] Higher covariant derivatives
    Gavrilov, A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (06) : 997 - 1007