Geodesic deviation at higher orders via covariant bitensors

被引:25
|
作者
Vines, Justin [1 ]
机构
[1] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Geodesic deviation; Jacobi equation; Bitensors; GENERALIZED JACOBI EQUATION; GRAVITATIONAL-FIELD; POINT-SEPARATION; RELATIVE MOTION; TEST PARTICLES; DYNAMICS; RADIATION; EPICYCLES; SPACETIME;
D O I
10.1007/s10714-015-1901-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review a simple but instructive application of the formalism of covariant bitensors, to use a deviation vector field along a fiducial geodesic to describe a neighboring worldline, in an exact and manifestly covariant manner, via the exponential map. Requiring the neighboring worldline to be a geodesic leads to the usual linear geodesic deviation equation for the deviation vector, plus corrections at higher order in the deviation and relative velocity. We show how these corrections can be efficiently computed to arbitrary orders via covariant bitensor expansions, deriving a form of the geodesic deviation equation valid to all orders, and producing its explicit expanded form through fourth order. We also discuss the generalized Jacobi equation, action principles for the higher-order geodesic deviation equations, results useful for describing accelerated neighboring worldlines, and the formal general solution to the geodesic deviation equation through second order.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] A rigorous solution concept for geodesic and geodesic deviation equations in impulsive gravitational waves
    Kunzinger, M
    Steinbauer, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1479 - 1489
  • [32] Influence of quantum matter fluctuations on geodesic deviation
    Drago, Nicolo
    Pinamonti, Nicola
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (37)
  • [33] Geodesic deviation equation in f (T) gravity
    Darabi, F.
    Mousavi, M.
    Atazadeh, K.
    PHYSICAL REVIEW D, 2015, 91 (08):
  • [34] Geodesic deviation equation in f (R) gravity
    Alejandro Guarnizo
    Leonardo Castañeda
    Juan M. Tejeiro
    General Relativity and Gravitation, 2011, 43
  • [35] Geodesic deviation and particle creation in curved spacetimes
    A. Mironov
    A. Morozov
    T. N. Tomaras
    JETP Letters, 2012, 94 : 795 - 799
  • [36] BGV theorem, geodesic deviation, and quantum fluctuations
    Kothawala, Dawood
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (04)
  • [37] Geodesics and geodesic deviation for impulsive gravitational waves
    Steinbauer, R.
    Journal of Mathematical Physics, 39 (04):
  • [38] Geodesic deviation in Kaluza-Klein theories
    Kerner, R
    Martin, J
    Mignemi, S
    van Holten, JW
    PHYSICAL REVIEW D, 2001, 63 (02)
  • [39] Geodesics and geodesic deviation for impulsive gravitational waves
    Steinbauer, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) : 2201 - 2212
  • [40] Quantum mechanics and geodesic deviation in the brane world
    Rasouli, S. M. M.
    Bahrehbakhsh, A. F.
    Jalalzadeh, S.
    Farhoudi, M.
    EPL, 2009, 87 (04)