Geodesic deviation at higher orders via covariant bitensors

被引:25
|
作者
Vines, Justin [1 ]
机构
[1] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Geodesic deviation; Jacobi equation; Bitensors; GENERALIZED JACOBI EQUATION; GRAVITATIONAL-FIELD; POINT-SEPARATION; RELATIVE MOTION; TEST PARTICLES; DYNAMICS; RADIATION; EPICYCLES; SPACETIME;
D O I
10.1007/s10714-015-1901-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review a simple but instructive application of the formalism of covariant bitensors, to use a deviation vector field along a fiducial geodesic to describe a neighboring worldline, in an exact and manifestly covariant manner, via the exponential map. Requiring the neighboring worldline to be a geodesic leads to the usual linear geodesic deviation equation for the deviation vector, plus corrections at higher order in the deviation and relative velocity. We show how these corrections can be efficiently computed to arbitrary orders via covariant bitensor expansions, deriving a form of the geodesic deviation equation valid to all orders, and producing its explicit expanded form through fourth order. We also discuss the generalized Jacobi equation, action principles for the higher-order geodesic deviation equations, results useful for describing accelerated neighboring worldlines, and the formal general solution to the geodesic deviation equation through second order.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Geodesic deviation at higher orders via covariant bitensors
    Justin Vines
    General Relativity and Gravitation, 2015, 47
  • [2] Geodesic deviation: useful tool for understanding higher dimensional spacetimes
    Svarc, R.
    Podolsky, J.
    TOWARDS NEW PARADIGMS: PROCEEDING OF THE SPANISH RELATIVITY MEETING 2011, 2012, 1458 : 527 - 530
  • [3] The quantization of geodesic deviation
    Roberts, MD
    GENERAL RELATIVITY AND GRAVITATION, 1996, 28 (11) : 1385 - 1392
  • [4] The Quantization of Geodesic Deviation
    Roberts, M. D.
    1996, (28)
  • [5] Geodesic Incompleteness and Partially Covariant Gravity
    Antoniadis, Ignatios
    Cotsakis, Spiros
    UNIVERSE, 2021, 7 (05)
  • [6] On geodesic deviation in Schwarzschild spacetime
    Philipp, Dennis
    Perlick, Volker
    Laemmerzahl, Claus
    Deshpande, Kaustubh
    2015 2ND IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2015, : 198 - 203
  • [7] A GENERALIZATION OF THE EQUATION OF GEODESIC DEVIATION
    VANZO, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1992, 107 (07): : 771 - 776
  • [8] GENERALIZED GEODESIC DEVIATION EQUATION
    CIUFOLINI, I
    PHYSICAL REVIEW D, 1986, 34 (04): : 1014 - 1017
  • [9] On integrability of the geodesic deviation equation
    Cariglia, Marco
    Houri, Tsuyoshi
    Krtous, Pavel
    Kubiznak, David
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (08):
  • [10] GEODESIC DEVIATION AND MINIKOWSKI SPACE
    BARRACO, D
    KOZAMEH, C
    NEWMAN, ET
    TOD, P
    GENERAL RELATIVITY AND GRAVITATION, 1990, 22 (09) : 1009 - 1019