Current challenges in Bayesian model choice

被引:0
|
作者
Clyde, M. A. [1 ]
Berger, J. O. [1 ]
Bullard, F. [1 ]
Ford, E. B. [2 ]
Jefferys, W. H. [3 ]
Luo, R. [1 ]
Paulo, R. [4 ]
Loredo, T. [5 ]
机构
[1] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
[2] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[3] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA
[4] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[5] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
关键词
MONTE-CARLO METHODS; NORMALIZING CONSTANTS; VARIABLE SELECTION; POSTERIOR DISTRIBUTIONS; MARGINAL LIKELIHOOD; ESTIMATING RATIOS; DENSITIES;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Model selection (and the related issue of model uncertainty) arises in many astronomical problems, and, in particular, has been one of the focal areas of the Exoplanet working group under the SAMSI (Statistics and Applied Mathematical Sciences Institute) Astrostatistcs Exoplanet program. We provide an overview of the Bayesian approach to model selection and highlight the challenges involved in implementing Bayesian model choice in four stylized problems. We review some of the current methods used by statisticians and astronomers and present recent developments in the area. We discuss the applicability, computational challenges, and performance of suggested methods and conclude with recommendations and open questions.
引用
收藏
页码:224 / +
页数:3
相关论文
共 50 条
  • [42] Estimation and application of a Bayesian network model for discrete travel choice analysis
    Xie, Chi
    Waller, S. Travis
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2010, 2 (02): : 125 - 144
  • [43] Bayesian procedures as a numerical tool for the estimation of an intertemporal discrete choice model
    Haan, Peter
    Kemptner, Daniel
    Uhlendorff, Arne
    EMPIRICAL ECONOMICS, 2015, 49 (03) : 1123 - 1141
  • [44] Progress and current challenges with the quantum similarity model
    Pothos, Emmanuel M.
    Barque-Duran, Albert
    Yearsley, James M.
    Trueblood, Jennifer S.
    Busemeyer, Jerome R.
    Hampton, James A.
    FRONTIERS IN PSYCHOLOGY, 2015, 6
  • [45] MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space
    Ronquist, Fredrik
    Teslenko, Maxim
    van der Mark, Paul
    Ayres, Daniel L.
    Darling, Aaron
    Hohna, Sebastian
    Larget, Bret
    Liu, Liang
    Suchard, Marc A.
    Huelsenbeck, John P.
    SYSTEMATIC BIOLOGY, 2012, 61 (03) : 539 - 542
  • [46] Bayesian Optimization For Choice Data
    Benavoli, Alessio
    Azzimonti, Dario
    Piga, Dario
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2272 - 2279
  • [47] Bayesian cooperative choice of strategies
    Ichiishi, T
    Idzik, A
    INTERNATIONAL JOURNAL OF GAME THEORY, 1996, 25 (04) : 455 - 473
  • [48] Distinguishing between population bottleneck and population subdivision by a Bayesian model choice procedure
    Peter, Benjamin M.
    Wegmann, Daniel
    Excoffier, Laurent
    MOLECULAR ECOLOGY, 2010, 19 (21) : 4648 - 4660
  • [49] An exact Bayesian model of choice RT task incorporating prior knowledge.
    Chang, M
    Zhang, J
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1998, 42 (04) : 490 - 491
  • [50] Using Maxwell Distribution to Handle Selector's Indecisiveness in Choice Data: A New Latent Bayesian Choice Model
    Arshad, Muhammad
    Kifayat, Tanveer
    Guirao, Juan L. G.
    Sanchez, Juan M.
    Valverde, Adrian
    APPLIED SCIENCES-BASEL, 2022, 12 (13):