Bayesian Optimization For Choice Data

被引:3
|
作者
Benavoli, Alessio [1 ]
Azzimonti, Dario [2 ]
Piga, Dario [2 ]
机构
[1] Trinity Coll Dublin, Sch Comp Sci & Stat, Dublin, Ireland
[2] USI SUPSI, Dalle Molle Inst Artificial Intelligence IDSIA, Lugano, Switzerland
基金
爱尔兰科学基金会;
关键词
multi-objective optimization; Bayesian optimization; choice learning; MULTIOBJECTIVE OPTIMIZATION; IMPROVEMENT CRITERIA; GLOBAL OPTIMIZATION; PROBABILITY;
D O I
10.1145/3583133.3596324
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we introduce a new framework for multi-objective Bayesian optimisation where the multi-objective functions can only be accessed via choice judgements, such as "I pick options x(1), x(2), x(3) among this set of five options x(1), x(2),..., x(5)". The fact that the option x(4) is rejected means that there is at least one option among the selected ones x(1), x(2), x(3) that I strictly prefer over x(4) (but I do not have to specify which one). We assume that there is a latent vector function u for some dimension.. which embeds the options into the real vector space of dimension.., so that the choice set can be represented through a Pareto set of non-dominated options. By placing a Gaussian process prior on u and by using a novel likelihood model for choice data, we derive a surrogate model for the latent vector function. We then propose two novel acquisition functions to solve the multi-objective Bayesian optimisation from choice data.
引用
收藏
页码:2272 / 2279
页数:8
相关论文
共 50 条
  • [1] Bayesian Model Choice for Directional Data
    Fallaize, Christopher J.
    Kypraios, Theodore
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (01) : 25 - 34
  • [2] Bayesian optimization of generalized data
    Arbanas, Goran
    Feng, Jinghua
    Clifton, Zia J.
    Holcomb, Andrew M.
    Pigni, Marco T.
    Wiarda, Dorothea
    Chapman, Christopher W.
    Sobes, Vladimir
    Liu, Li Emily
    Danon, Yaron
    EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2018, 4
  • [3] Heterogeneity in choice experiment data: A Bayesian investigation
    Follett, Lendie
    Naald, Brian Vander
    JOURNAL OF CHOICE MODELLING, 2023, 46
  • [4] Bayesian Analysis of Individual Choice Behavior With Aggregate Data
    Park, Taeyoung
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 158 - 173
  • [5] Bayesian Optimization based on the data parallel approach
    Lv, Zhiming
    Zhao, Jun
    Wang, Wei
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1671 - 1675
  • [6] BAYESIAN OPTIMIZATION ALGORITHM FOR OLAP DATA CUBES
    Jia, Chen
    Chen, HongWei
    2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 2: FUTURE COMMUNICATION AND NETWORKING, 2011, : 391 - 394
  • [7] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [8] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    Psychometrika, 2016, 81 : 161 - 183
  • [9] A hierarchical Bayesian logit model for spatial multivariate choice data
    Oyama, Yuki
    Murakami, Daisuke
    Krueger, Rico
    JOURNAL OF CHOICE MODELLING, 2024, 52
  • [10] A Bayesian hierarchical model for discrete choice data in health care
    Antonio, Anna Liza M.
    Weiss, Robert E.
    Saigal, Christopher S.
    Dahan, Ely
    Crespi, Catherine M.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (12) : 3544 - 3559