Current challenges in Bayesian model choice

被引:0
|
作者
Clyde, M. A. [1 ]
Berger, J. O. [1 ]
Bullard, F. [1 ]
Ford, E. B. [2 ]
Jefferys, W. H. [3 ]
Luo, R. [1 ]
Paulo, R. [4 ]
Loredo, T. [5 ]
机构
[1] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
[2] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[3] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA
[4] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[5] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
关键词
MONTE-CARLO METHODS; NORMALIZING CONSTANTS; VARIABLE SELECTION; POSTERIOR DISTRIBUTIONS; MARGINAL LIKELIHOOD; ESTIMATING RATIOS; DENSITIES;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Model selection (and the related issue of model uncertainty) arises in many astronomical problems, and, in particular, has been one of the focal areas of the Exoplanet working group under the SAMSI (Statistics and Applied Mathematical Sciences Institute) Astrostatistcs Exoplanet program. We provide an overview of the Bayesian approach to model selection and highlight the challenges involved in implementing Bayesian model choice in four stylized problems. We review some of the current methods used by statisticians and astronomers and present recent developments in the area. We discuss the applicability, computational challenges, and performance of suggested methods and conclude with recommendations and open questions.
引用
收藏
页码:224 / +
页数:3
相关论文
共 50 条
  • [21] Lack of confidence in approximate Bayesian computation model choice
    Robert, Christian P.
    Cornuet, Jean-Marie
    Marin, Jean-Michel
    Pillai, Natesh S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (37) : 15112 - 15117
  • [22] Bayesian Model Choice of Grouped t-Copula
    Luo, Xiaolin
    Shevchenko, Pavel V.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2012, 14 (04) : 1097 - 1119
  • [23] A note on a Bayesian approach to a dichotomous choice environmental valuation model
    Yoo, SH
    JOURNAL OF APPLIED STATISTICS, 2004, 31 (10) : 1203 - 1209
  • [24] Amount of Information Needed for Model Choice in Approximate Bayesian Computation
    Stocks, Michael
    Siol, Mathieu
    Lascoux, Martin
    De Mita, Stephane
    PLOS ONE, 2014, 9 (06):
  • [25] A Bayesian mixed logit-probit model for multinomial choice
    Burda, Martin
    Harding, Matthew
    Hausman, Jerry
    JOURNAL OF ECONOMETRICS, 2008, 147 (02) : 232 - 246
  • [26] A BAYESIAN MULTINOMIAL PROBIT MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Fong, Duncan K. H.
    Kim, Sunghoon
    Chen, Zhe
    DeSarbo, Wayne S.
    PSYCHOMETRIKA, 2016, 81 (01) : 161 - 183
  • [27] A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA
    Duncan K. H. Fong
    Sunghoon Kim
    Zhe Chen
    Wayne S. DeSarbo
    Psychometrika, 2016, 81 : 161 - 183
  • [28] A hierarchical Bayesian logit model for spatial multivariate choice data
    Oyama, Yuki
    Murakami, Daisuke
    Krueger, Rico
    JOURNAL OF CHOICE MODELLING, 2024, 52
  • [29] A Bayesian hierarchical model for discrete choice data in health care
    Antonio, Anna Liza M.
    Weiss, Robert E.
    Saigal, Christopher S.
    Dahan, Ely
    Crespi, Catherine M.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (12) : 3544 - 3559
  • [30] Bayesian model choice and infection route modelling in an outbreak of Norovirus
    O'Neill, PD
    Marks, PJ
    STATISTICS IN MEDICINE, 2005, 24 (13) : 2011 - 2024