Backwards Ito-Henstock's version of Ito's formula

被引:1
|
作者
Rulete, Ricky F. [1 ]
Labendia, Mhelmar A. [2 ]
机构
[1] Univ Southeastern Philippines, Coll Arts & Sci, Dept Math & Stat, Davao 8000, Philippines
[2] MSU Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Andres Bonifacio Ave, Iligan 9200, Philippines
关键词
Backwards Ito-Henstock integral; Ito's formula; Q-Wiener process; INTEGRATION;
D O I
10.1007/s43034-019-00014-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formulate a version of Ito's formula for the backwards Ito-Henstock integral of an operator-valued stochastic process. Ito's formula is the stochastic analogue of the change of variable for deterministic integrals.
引用
收藏
页码:208 / 225
页数:18
相关论文
共 50 条
  • [1] HENSTOCK'S VERSION OF ITO'S FORMULA
    Toh, Tin Lam
    Chew, Than Seng
    REAL ANALYSIS EXCHANGE, 2009, 35 (02) : 375 - 390
  • [2] A DESCRIPTIVE DEFINITION OF THE BACKWARDS ITO-HENSTOCK INTEGRAL
    Rulete, Ricky F.
    Labendia, Mhelmar A.
    REAL ANALYSIS EXCHANGE, 2019, 44 (02) : 427 - 444
  • [3] ITO-HENSTOCK INTEGRAL AND ITO'S FORMULA FOR THE OPERATOR-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    Teng, Timothy Robin Y.
    de Lara-Tuprio, Elvira P.
    MATHEMATICA BOHEMICA, 2018, 143 (02): : 135 - 160
  • [4] Backwards Itô–Henstock’s version of Itô’s formula
    Ricky F. Rulete
    Mhelmar A. Labendia
    Annals of Functional Analysis, 2020, 11 : 208 - 225
  • [5] DOUBLE LUSIN CONDITION AND CONVERGENCE THEOREMS FOR THE BACKWARDS ITO-HENSTOCK INTEGRAL
    Rulete, Ricky F.
    Labendia, Mhelmar A.
    REAL ANALYSIS EXCHANGE, 2020, 45 (01) : 101 - 125
  • [6] Backwards Ito-Henstock Integral for the Hilbert-Schmidt-Valued Stochastic Process
    Rulete, Ricky F.
    Labendia, Mhelmar A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (01): : 58 - 78
  • [7] THE ITO-HENSTOCK STOCHASTIC DIFFERENTIAL EQUATIONS
    Boon, Tan Soon
    Lam, Toh Tin
    REAL ANALYSIS EXCHANGE, 2011, 37 (02) : 411 - 424
  • [8] A proof of ito's formula using a discrete ito's formula
    Fujita, Takahiko
    Kawanishi, Yasuhiro
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2008, 45 (01) : 125 - 134
  • [9] A Q-fractional version of Ito's formula
    Grecksch, Wilfried
    Roth, Christian
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 369 - 380
  • [10] Convergence Theorems for the Ito-Henstock Integrable Operator-Valued Stochastic Process
    Labendia, M. A.
    Benitez, J., V
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 565 - 586