Convergence Theorems for the Ito-Henstock Integrable Operator-Valued Stochastic Process

被引:0
|
作者
Labendia, M. A. [1 ]
Benitez, J., V [1 ]
机构
[1] Mindanao State Univ, Dept Math & Stat, Coll Sci & Math,Iligan Inst Technol, Ctr Graph Theory Algebra & Anal,Premier Res Inst, Iligan, Philippines
来源
关键词
Ito-Henstock integrable; Ito integral; Q-Wiener process;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we formulate versions of convergence theorems for the Ito-Henstock integral of an operator-valued stochastic process with respect to a Hilbert space-valued Wiener process. We also prove that every Ito integrable operator-valued stochastic process is Ito-Henstock integrable using some versions of convergence theorems established in this paper.
引用
收藏
页码:565 / 586
页数:22
相关论文
共 50 条
  • [1] Double Lusin Condition for the Ito-Henstock Integrable Operator-Valued Stochastic Process
    Labendia, Mhelmar A.
    Arcede, Jayrold P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (04): : 1003 - 1013
  • [2] ITO-HENSTOCK INTEGRAL AND ITO'S FORMULA FOR THE OPERATOR-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    Teng, Timothy Robin Y.
    de Lara-Tuprio, Elvira P.
    MATHEMATICA BOHEMICA, 2018, 143 (02): : 135 - 160
  • [3] A DESCRIPTIVE DEFINITION OF THE ITO-HENSTOCK INTEGRAL FOR THE OPERATOR-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    Arcede, Jayrold P.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 406 - 418
  • [4] Backwards Ito-Henstock Integral for the Hilbert-Schmidt-Valued Stochastic Process
    Rulete, Ricky F.
    Labendia, Mhelmar A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (01): : 58 - 78
  • [5] DOUBLE LUSIN CONDITION AND CONVERGENCE THEOREMS FOR THE BACKWARDS ITO-HENSTOCK INTEGRAL
    Rulete, Ricky F.
    Labendia, Mhelmar A.
    REAL ANALYSIS EXCHANGE, 2020, 45 (01) : 101 - 125
  • [6] A Normed Space of Weakly Integrable Operator-Valued Functions and Convergence Theorems
    Arsenovic, Milos
    Krstic, Mihailo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2025, 51 (02)
  • [7] THE ITO-HENSTOCK STOCHASTIC DIFFERENTIAL EQUATIONS
    Boon, Tan Soon
    Lam, Toh Tin
    REAL ANALYSIS EXCHANGE, 2011, 37 (02) : 411 - 424
  • [8] A RIEMANN-TYPE DEFINITION OF THE ITO INTEGRAL FOR THE OPERATOR-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (03): : 625 - 640
  • [9] A Version of Fundamental Theorem for the Ito-McShane Integral of an Operator-Valued Stochastic Process
    Cagubcob, Jeffer Dave A.
    Labendia, Mhelmar A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (01): : 101 - 117
  • [10] OPERATOR-VALUED STOCHASTIC INTEGRALS
    KUO, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (01) : 207 - 210