Backwards Ito-Henstock Integral for the Hilbert-Schmidt-Valued Stochastic Process

被引:5
|
作者
Rulete, Ricky F. [1 ]
Labendia, Mhelmar A. [2 ]
机构
[1] Univ Southeastern Philippines, Coll Arts & Sci, Dept Math & Stat, Davao 8000, Philippines
[2] Mindanao State Univ, Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan, Philippines
来源
关键词
Backwards Ito-Henstock integral; Ito Isometry; AC(2)-property;
D O I
10.29020/nybg.ejpam.v12i1.3342
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a definition of backwards Ito-Henstock integral for the. Hilbert-Schmidtvalued stochastic process is introduced. We formulate the Ito isometry for this integral. Moreover, an equivalent definition for this integral is given using the concept of AC(2)[0, T]-property, a version of absolute continuity.
引用
收藏
页码:58 / 78
页数:21
相关论文
共 17 条
  • [1] AN ALTERNATIVE DEFINITION OF THE ITO INTEGRAL FOR THE HILBERT-SCHMIDT-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (04): : 370 - 383
  • [2] ITO-HENSTOCK INTEGRAL AND ITO'S FORMULA FOR THE OPERATOR-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    Teng, Timothy Robin Y.
    de Lara-Tuprio, Elvira P.
    MATHEMATICA BOHEMICA, 2018, 143 (02): : 135 - 160
  • [3] A DESCRIPTIVE DEFINITION OF THE BACKWARDS ITO-HENSTOCK INTEGRAL
    Rulete, Ricky F.
    Labendia, Mhelmar A.
    REAL ANALYSIS EXCHANGE, 2019, 44 (02) : 427 - 444
  • [4] A DESCRIPTIVE DEFINITION OF THE ITO-HENSTOCK INTEGRAL FOR THE OPERATOR-VALUED STOCHASTIC PROCESS
    Labendia, Mhelmar A.
    Arcede, Jayrold P.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 406 - 418
  • [5] Convergence Theorems for the Ito-Henstock Integrable Operator-Valued Stochastic Process
    Labendia, M. A.
    Benitez, J., V
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 565 - 586
  • [6] DOUBLE LUSIN CONDITION AND CONVERGENCE THEOREMS FOR THE BACKWARDS ITO-HENSTOCK INTEGRAL
    Rulete, Ricky F.
    Labendia, Mhelmar A.
    REAL ANALYSIS EXCHANGE, 2020, 45 (01) : 101 - 125
  • [7] Backwards Ito-Henstock's version of Ito's formula
    Rulete, Ricky F.
    Labendia, Mhelmar A.
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (01) : 208 - 225
  • [8] Double Lusin Condition for the Ito-Henstock Integrable Operator-Valued Stochastic Process
    Labendia, Mhelmar A.
    Arcede, Jayrold P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (04): : 1003 - 1013
  • [9] THE ITO-HENSTOCK STOCHASTIC DIFFERENTIAL EQUATIONS
    Boon, Tan Soon
    Lam, Toh Tin
    REAL ANALYSIS EXCHANGE, 2011, 37 (02) : 411 - 424
  • [10] A NOTE ON HENSTOCK-ITO'S NON-STOCHASTIC INTEGRAL
    Lim, Clara Ying Yi
    Toh, Tin Lam
    REAL ANALYSIS EXCHANGE, 2022, 47 (02) : 443 - 460