Backwards Ito-Henstock's version of Ito's formula

被引:1
|
作者
Rulete, Ricky F. [1 ]
Labendia, Mhelmar A. [2 ]
机构
[1] Univ Southeastern Philippines, Coll Arts & Sci, Dept Math & Stat, Davao 8000, Philippines
[2] MSU Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Andres Bonifacio Ave, Iligan 9200, Philippines
关键词
Backwards Ito-Henstock integral; Ito's formula; Q-Wiener process; INTEGRATION;
D O I
10.1007/s43034-019-00014-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formulate a version of Ito's formula for the backwards Ito-Henstock integral of an operator-valued stochastic process. Ito's formula is the stochastic analogue of the change of variable for deterministic integrals.
引用
收藏
页码:208 / 225
页数:18
相关论文
共 50 条
  • [21] On Ito-Kurzweil-Henstock integral and integration-by-part formula
    Toh, TL
    Chew, TS
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (03) : 653 - 663
  • [22] A NOTE ON HENSTOCK-ITO'S NON-STOCHASTIC INTEGRAL
    Lim, Clara Ying Yi
    Toh, Tin Lam
    REAL ANALYSIS EXCHANGE, 2022, 47 (02) : 443 - 460
  • [23] Ito of Ito's cells
    Haubrich, W
    GASTROENTEROLOGY, 2006, 130 (03) : 714 - 714
  • [24] Ito's formula for Walsh's Brownian motion and applications
    Hajri, Hatem
    Touhami, Wajdi
    STATISTICS & PROBABILITY LETTERS, 2014, 87 : 48 - 53
  • [25] Generalized Ito formula and derivation of Bellman's equation
    Chitashvili, R
    Mania, M
    STOCHASTIC PROCESSES AND RELATED TOPICS, 1996, 10 : 1 - 21
  • [26] TOWARDS THE VALIDITY OF ITO'S FORMULA FOR DISCONTINUOUS FUNCTIONS
    Perelman, G. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2012, 56 (03) : 443 - 456
  • [27] An extension of Ito's formula for elliptic diffusion processes
    Bardina, X
    Jolis, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 69 (01) : 83 - 109
  • [28] ITO'S FORMULA FOR GAUSSIAN PROCESSES WITH STOCHASTIC DISCONTINUITIES
    Bender, Christian
    ANNALS OF PROBABILITY, 2020, 48 (01): : 458 - 492
  • [29] Ito's integrated formula for strict local martingales
    Madan, Dilip B.
    Yor, Marc
    IN MEMORIAM PAUL-ANDRE MEYER: SEMINAIRE DE PROBABILITIES XXXIX, 2006, 1874 : 157 - 170
  • [30] Generalization of Ito's formula for smooth nondegenerate martingales
    Moret, S
    Nualart, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 91 (01) : 115 - 149