Approximate Bayesian Computation (ABC) in practice

被引:799
|
作者
Csillery, Katalin [1 ]
Blum, Michael G. B. [1 ]
Gaggiotti, Oscar E. [2 ]
Francois, Olivier [1 ]
机构
[1] Univ Grenoble 1, CNRS, UMR5525, Lab Tech Ingn Med & Complex, F-38706 La Tronche, France
[2] Univ Grenoble 1, CNRS, UMR5553, Lab Ecol Alpine, F-38041 Grenoble, France
关键词
CHAIN MONTE-CARLO; DNA-SEQUENCE DATA; GENETIC DIVERSITY; MODEL SELECTION; DROSOPHILA-MELANOGASTER; STATISTICAL EVALUATION; COALESCENT SIMULATION; DEMOGRAPHIC HISTORY; POPULATION HISTORY; DYNAMICAL-SYSTEMS;
D O I
10.1016/j.tree.2010.04.001
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Understanding the forces that influence natural variation within and among populations has been a major objective of evolutionary biologists for decades. Motivated by the growth in computational power and data complexity, modern approaches to this question make intensive use of simulation methods. Approximate Bayesian Computation (ABC) is one of these methods. Here we review the foundations of ABC, its recent algorithmic developments, and its applications in evolutionary biology and ecology. We argue that the use of ABC should incorporate all aspects of Bayesian data analysis: formulation, fitting, and improvement of a model. ABC can be a powerful tool to make inferences with complex models if these principles are carefully applied.
引用
收藏
页码:410 / 418
页数:9
相关论文
共 50 条
  • [31] Approximate Bayesian Computation with Path Signatures
    Dyer, Joel
    Cannon, Patrick
    Schmon, Sebastian M.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2024, 244 : 1207 - 1231
  • [32] Approximate Bayesian Computation in Evolution and Ecology
    Beaumont, Mark A.
    ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 41, 2010, 41 : 379 - 406
  • [33] Information Geometry for Approximate Bayesian Computation
    Spiliopoulos, Konstantinos
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 229 - 260
  • [34] Approximate Bayesian Computation via Classification
    Wang, Yuexi
    Kaji, Tetsuya
    Rockova, Veronika
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [35] Approximate Bayesian Computation for Discrete Spaces
    Auzina, Ilze A.
    Tomczak, Jakub M.
    ENTROPY, 2021, 23 (03) : 1 - 16
  • [36] APPROXIMATE BAYESIAN COMPUTATION BY SUBSET SIMULATION
    Chiachio, Manuel
    Beck, James L.
    Chiachio, Juan
    Rus, Guillermo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03): : A1339 - A1358
  • [37] APPROXIMATE BAYESIAN COMPUTATION FOR COPULA ESTIMATION
    Grazian, Clara
    Liseo, Brunero
    STATISTICA, 2015, 75 (01) : 111 - 127
  • [38] The rate of convergence for approximate Bayesian computation
    Barber, Stuart
    Voss, Jochen
    Webster, Mark
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 80 - 105
  • [39] Asymptotic properties of approximate Bayesian computation
    Frazier, D. T.
    Martin, G. M.
    Robert, C. P.
    Rousseau, J.
    BIOMETRIKA, 2018, 105 (03) : 593 - 607
  • [40] Approximate Bayesian Computation via Classification
    Wang, Yuexi
    Kaji, Tetsuya
    Rockova, Veronika
    Journal of Machine Learning Research, 2022, 23