Approximate Bayesian Computation (ABC) in practice

被引:799
|
作者
Csillery, Katalin [1 ]
Blum, Michael G. B. [1 ]
Gaggiotti, Oscar E. [2 ]
Francois, Olivier [1 ]
机构
[1] Univ Grenoble 1, CNRS, UMR5525, Lab Tech Ingn Med & Complex, F-38706 La Tronche, France
[2] Univ Grenoble 1, CNRS, UMR5553, Lab Ecol Alpine, F-38041 Grenoble, France
关键词
CHAIN MONTE-CARLO; DNA-SEQUENCE DATA; GENETIC DIVERSITY; MODEL SELECTION; DROSOPHILA-MELANOGASTER; STATISTICAL EVALUATION; COALESCENT SIMULATION; DEMOGRAPHIC HISTORY; POPULATION HISTORY; DYNAMICAL-SYSTEMS;
D O I
10.1016/j.tree.2010.04.001
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Understanding the forces that influence natural variation within and among populations has been a major objective of evolutionary biologists for decades. Motivated by the growth in computational power and data complexity, modern approaches to this question make intensive use of simulation methods. Approximate Bayesian Computation (ABC) is one of these methods. Here we review the foundations of ABC, its recent algorithmic developments, and its applications in evolutionary biology and ecology. We argue that the use of ABC should incorporate all aspects of Bayesian data analysis: formulation, fitting, and improvement of a model. ABC can be a powerful tool to make inferences with complex models if these principles are carefully applied.
引用
收藏
页码:410 / 418
页数:9
相关论文
共 50 条
  • [21] Adaptive approximate Bayesian computation
    Beaumont, Mark A.
    Cornuet, Jean-Marie
    Marin, Jean-Michel
    Robert, Christian P.
    BIOMETRIKA, 2009, 96 (04) : 983 - 990
  • [22] Multifidelity Approximate Bayesian Computation
    Prescott, Thomas P.
    Baker, Ruth E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 114 - 138
  • [23] Handbook of Approximate Bayesian Computation
    Franks, Jordan J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (532) : 2100 - 2101
  • [24] A tutorial on approximate Bayesian computation
    Turner, Brandon M.
    Van Zandt, Trisha
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (02) : 69 - 85
  • [25] Approximate Bayesian computation and MCMC
    Plagnol, V
    Tavaré, S
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 99 - 113
  • [26] Hierarchical Approximate Bayesian Computation
    Turner, Brandon M.
    Van Zandt, Trisha
    PSYCHOMETRIKA, 2014, 79 (02) : 185 - 209
  • [27] An Introduction to Approximate Bayesian Computation
    Nguyen, Hien D.
    STATISTICS AND DATA SCIENCE, RSSDS 2019, 2019, 1150 : 96 - 108
  • [28] Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation
    Fearnhead, Paul
    Prangle, Dennis
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2012, 74 : 419 - 474
  • [29] Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation
    Cornuet, Jean-Marie
    Santos, Filipe
    Beaumont, Mark A.
    Robert, Christian P.
    Marin, Jean-Michel
    Balding, David J.
    Guillemaud, Thomas
    Estoup, Arnaud
    BIOINFORMATICS, 2008, 24 (23) : 2713 - 2719
  • [30] Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data
    Hazra, Indranil
    Pandey, Mahesh D.
    Manzana, Noldainerick
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 198 (198)