Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate

被引:0
|
作者
Billaudelle, S. [1 ]
Stradmann, Y. [1 ]
Schreiber, K. [1 ]
Cramer, B. [1 ]
Baumbach, A. [1 ]
Dold, D. [1 ]
Goeltz, J. [1 ]
Kungl, A. F. [1 ,3 ,4 ]
Wunderlich, T. C. [1 ]
Hartel, A. [1 ]
Mueller, E. [1 ]
Breitwieser, O. [1 ]
Mauch, C. [1 ]
Kleider, M. [1 ]
Gruebl, A. [1 ]
Stoeckel, D. [1 ]
Pehle, C. [1 ]
Heimbrecht, A. [1 ]
Spilger, P. [1 ]
Kiene, G. [1 ]
Karasenko, V [1 ]
Senn, W. [2 ]
Petrovici, M. A. [1 ,2 ]
Schemmel, J. [1 ]
Meier, K. [1 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[2] Univ Bern, Dept Physiol, Bern, Switzerland
[3] Berlin Inst Hlth, Berlin, Germany
[4] Charite, Berlin, Germany
关键词
MEMORY;
D O I
10.48350/149640
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present first experimental results on the novel BrainScaleS-2 neuromorphic architecture based on an analog neuro-synaptic core and augmented by embedded microprocessors for complex plasticity and experiment control. The high acceleration factor of 1000 compared to biological dynamics enables the execution of computationally expensive tasks, by allowing the fast emulation of long-duration experiments or rapid iteration over many consecutive trials. The flexibility of our architecture is demonstrated in a suite of five distinct experiments, which emphasize different aspects of the BrainScaleS-2 system.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Endurance-Aware Mapping of Spiking Neural Networks to Neuromorphic Hardware
    Titirsha, Twisha
    Song, Shihao
    Das, Anup
    Krichmar, Jeffrey
    Dutt, Nikil
    Kandasamy, Nagarajan
    Catthoor, Francky
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (02) : 288 - 301
  • [42] Spiking recurrent neural networks for neuromorphic computing in nonlinear structural mechanics
    Tandale, Saurabh Balkrishna
    Stoffel, Marcus
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 412
  • [43] NeuroMoCo: a neuromorphic momentum contrast learning method for spiking neural networks
    Ma, Yuqi
    Wang, Huamin
    Shen, Hangchi
    Chen, Xuemei
    Duan, Shukai
    Wen, Shiping
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [44] Thermal-Aware Compilation of Spiking Neural Networks to Neuromorphic Hardware
    Titirsha, Twisha
    Das, Anup
    LANGUAGES AND COMPILERS FOR PARALLEL COMPUTING, LCPC 2020, 2022, 13149 : 134 - 150
  • [45] In-Hardware Learning of Multilayer Spiking Neural Networks on a Neuromorphic Processor
    Shrestha, Amar
    Fang, Haowen
    Rider, Daniel Patrick
    Mei, Zaidao
    Qiu, Qinru
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 367 - 372
  • [46] Exploring Neuromorphic Computing Based on Spiking Neural Networks: Algorithms to Hardware
    Rathi, Nitin
    Chakraborty, Indranil
    Kosta, Adarsh
    Sengupta, Abhronil
    Ankit, Aayush
    Panda, Priyadarshini
    Roy, Kaushik
    ACM COMPUTING SURVEYS, 2023, 55 (12)
  • [47] LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic Processor
    Viale, Alberto
    Marchisio, Alberto
    Martina, Maurizio
    Masera, Guido
    Shafique, Muhammad
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 79 - 86
  • [48] Advances in Neuromorphic Spin-Based Spiking Neural Networks: A review
    Verma, Gaurav
    Bindal, Namita
    Nisar, Arshid
    Dhull, Seema
    Kaushik, Brajesh Kumar
    IEEE NANOTECHNOLOGY MAGAZINE, 2021, 15 (05) : 33 - 44
  • [49] Neuro-Evolution of Spiking Neural Networks on SpiNNaker Neuromorphic Hardware
    Vandesompele, Alexander
    Walter, Florian
    Roehrbein, Florian
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [50] Subthreshold neuromorphic devices for Spiking Neural Networks applied to embedded AI
    Loyez, Christophe
    Carpentier, Kevin
    Sourikopoulos, Ilias
    Danneville, Francois
    2021 19TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2021,