Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate

被引:0
|
作者
Billaudelle, S. [1 ]
Stradmann, Y. [1 ]
Schreiber, K. [1 ]
Cramer, B. [1 ]
Baumbach, A. [1 ]
Dold, D. [1 ]
Goeltz, J. [1 ]
Kungl, A. F. [1 ,3 ,4 ]
Wunderlich, T. C. [1 ]
Hartel, A. [1 ]
Mueller, E. [1 ]
Breitwieser, O. [1 ]
Mauch, C. [1 ]
Kleider, M. [1 ]
Gruebl, A. [1 ]
Stoeckel, D. [1 ]
Pehle, C. [1 ]
Heimbrecht, A. [1 ]
Spilger, P. [1 ]
Kiene, G. [1 ]
Karasenko, V [1 ]
Senn, W. [2 ]
Petrovici, M. A. [1 ,2 ]
Schemmel, J. [1 ]
Meier, K. [1 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[2] Univ Bern, Dept Physiol, Bern, Switzerland
[3] Berlin Inst Hlth, Berlin, Germany
[4] Charite, Berlin, Germany
关键词
MEMORY;
D O I
10.48350/149640
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present first experimental results on the novel BrainScaleS-2 neuromorphic architecture based on an analog neuro-synaptic core and augmented by embedded microprocessors for complex plasticity and experiment control. The high acceleration factor of 1000 compared to biological dynamics enables the execution of computationally expensive tasks, by allowing the fast emulation of long-duration experiments or rapid iteration over many consecutive trials. The flexibility of our architecture is demonstrated in a suite of five distinct experiments, which emphasize different aspects of the BrainScaleS-2 system.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Mapping Spiking Neural Networks onto a Manycore Neuromorphic Architecture
    Lin, Chit-Kwan
    Wild, Andreas
    Chinya, Gautham N.
    Lin, Tsung-Han
    Davies, Mike
    Wang, Hong
    ACM SIGPLAN NOTICES, 2018, 53 (04) : 78 - 89
  • [22] Heartbeat Classification with Spiking Neural Networks on the Loihi Neuromorphic Processor
    Buettner, Kyle
    George, Alan D.
    2021 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2021), 2021, : 138 - 143
  • [23] Mapping Spiking Neural Networks onto a Manycore Neuromorphic Architecture
    Lin, Chit-Kwan
    Wild, Andreas
    Chinya, Gautham N.
    Lin, Tsung-Han
    Davies, Mike
    Wang, Hong
    PROCEEDINGS OF THE 39TH ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, PLDI 2018, 2018, : 78 - 89
  • [24] Neuromorphic Speech Recognition With Photonic Convolutional Spiking Neural Networks
    Xiang, Shuiying
    Zhang, Tianrui
    Han, Yanan
    Guo, Xingxing
    Zhang, Yahui
    Shi, Yuechun
    Hao, Yue
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (06)
  • [25] Efficient asynchronous federated neuromorphic learning of spiking neural networks
    Wang, Yuan
    Duan, Shukai
    Chen, Feng
    NEUROCOMPUTING, 2023, 557
  • [26] Efficient Deployment of Spiking Neural Networks on SpiNNaker Neuromorphic Platform
    Galanis, Ioannis
    Anagnostopoulos, Iraklis
    Nguyen, Chinh
    Bares, Guillermo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (06) : 1937 - 1941
  • [27] Spiking Neural Networks-Part III: Neuromorphic Communications
    Skatchkovsky, Nicolas
    Jang, Hyeryung
    Simeone, Osvaldo
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (06) : 1746 - 1750
  • [28] Compiling Spiking Neural Networks to Mitigate Neuromorphic Hardware Constraints
    Balaji, Adarsha
    Das, Anup
    2020 11TH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING WORKSHOPS (IGSC), 2020,
  • [29] Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems
    Guo, Wenzhe
    Fouda, Mohammed E.
    Eltawil, Ahmed M.
    Salama, Khaled Nabil
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [30] Spiking neural networks compensate for weight drift in organic neuromorphic device networks
    Felder, Daniel
    Linkhorst, John
    Wessling, Matthias
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2023, 3 (02):