Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate

被引:0
|
作者
Billaudelle, S. [1 ]
Stradmann, Y. [1 ]
Schreiber, K. [1 ]
Cramer, B. [1 ]
Baumbach, A. [1 ]
Dold, D. [1 ]
Goeltz, J. [1 ]
Kungl, A. F. [1 ,3 ,4 ]
Wunderlich, T. C. [1 ]
Hartel, A. [1 ]
Mueller, E. [1 ]
Breitwieser, O. [1 ]
Mauch, C. [1 ]
Kleider, M. [1 ]
Gruebl, A. [1 ]
Stoeckel, D. [1 ]
Pehle, C. [1 ]
Heimbrecht, A. [1 ]
Spilger, P. [1 ]
Kiene, G. [1 ]
Karasenko, V [1 ]
Senn, W. [2 ]
Petrovici, M. A. [1 ,2 ]
Schemmel, J. [1 ]
Meier, K. [1 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[2] Univ Bern, Dept Physiol, Bern, Switzerland
[3] Berlin Inst Hlth, Berlin, Germany
[4] Charite, Berlin, Germany
关键词
MEMORY;
D O I
10.48350/149640
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present first experimental results on the novel BrainScaleS-2 neuromorphic architecture based on an analog neuro-synaptic core and augmented by embedded microprocessors for complex plasticity and experiment control. The high acceleration factor of 1000 compared to biological dynamics enables the execution of computationally expensive tasks, by allowing the fast emulation of long-duration experiments or rapid iteration over many consecutive trials. The flexibility of our architecture is demonstrated in a suite of five distinct experiments, which emphasize different aspects of the BrainScaleS-2 system.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Accelerated Simulation of Spiking Neural Networks Using GPUs
    Fidjeland, Andreas K.
    Shanahan, Murray P.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [32] A Hardware Accelerated Simulation Environment for Spiking Neural Networks
    Glackin, Brendan
    Harkin, Jim
    McGinnity, Thomas M.
    Maguire, Liam P.
    RECONFIGURABLE COMPUTING: ARCHITECTURES, TOOLS AND APPLICATIONS, 2009, 5453 : 336 - 341
  • [33] Spiking Neural Networks for LPI Radar Waveform Recognition with Neuromorphic Computing
    Henderson, Alex
    Harbour, Steven
    Yakopcic, Chris
    Taha, Tarek
    Brown, David
    Tieman, Justin
    Hall, Garrett
    2023 IEEE RADAR CONFERENCE, RADARCONF23, 2023,
  • [34] Improving Classification Accuracy of Feedforward Neural Networks for Spiking Neuromorphic Chips
    Yepes, Antonio Jimeno
    Tang, Jianbin
    Mashford, Benjamin Scott
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1973 - 1979
  • [35] Dataflow-Based Mapping of Spiking Neural Networks on Neuromorphic Hardware
    Das, Anup
    Kumar, Akash
    PROCEEDINGS OF THE 2018 GREAT LAKES SYMPOSIUM ON VLSI (GLSVLSI'18), 2018, : 419 - 422
  • [36] Run-time Mapping of Spiking Neural Networks to Neuromorphic Hardware
    Adarsha Balaji
    Thibaut Marty
    Anup Das
    Francky Catthoor
    Journal of Signal Processing Systems, 2020, 92 : 1293 - 1302
  • [37] Run-time Mapping of Spiking Neural Networks to Neuromorphic Hardware
    Balaji, Adarsha
    Marty, Thibaut
    Das, Anup
    Catthoor, Francky
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2020, 92 (11): : 1293 - 1302
  • [38] Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
    Camunas-Mesa, Luis A.
    Linares-Barranco, Bernabe
    Serrano-Gotarredona, Teresa
    MATERIALS, 2019, 12 (17)
  • [39] Evaluation of neuron parameters on the performance of spiking neural networks and neuromorphic hardware
    Schuman, Catherine
    Das, Hritom
    Rose, Garrett S.
    Plank, James S.
    2024 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI, 2024, : 337 - 342
  • [40] Impact of Noisy Input on Evolved Spiking Neural Networks for Neuromorphic Systems
    Patel, Karan P.
    Schuman, Catherine D.
    PROCEEDINGS OF THE 2023 ANNUAL NEURO-INSPIRED COMPUTATIONAL ELEMENTS CONFERENCE, NICE 2023, 2023, : 52 - 56