Computing regions of attraction with polytopes: Planar case

被引:12
|
作者
Romanchuk, BG
机构
[1] Department of Electrical Engineering, McGill University, Montreal, Que. H3A 2A7
关键词
Lyapunov stability; piecewise-linear analysis; numerical algorithms; saturation;
D O I
10.1016/S0005-1098(96)80011-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm that estimates the region of attraction of the origin using a convex polytope is developed for piecewise-linear dynamical systems. This is equivalent to the problem of computing a Lyapunov function. The R(2) case is studied here for simplicity. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1727 / 1732
页数:6
相关论文
共 50 条
  • [1] PLANAR REGIONS OF ATTRACTION
    JOCIC, LB
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (03) : 708 - 710
  • [2] Computing Domains of Attraction for Planar Dynamics
    Graca, Daniel S.
    Zhong, Ning
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2009, 5715 : 179 - +
  • [3] Average Case Performance of Replicator Dynamics in Potential Games via Computing Regions of Attraction
    Panageas, Ioannis
    Piliouras, Georgios
    EC'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2016, : 703 - 720
  • [4] REGIONS OF ATTRACTION WHEN COMPUTING ROOTS OF POLYNOMIALS WITH NEWTON-METHOD
    BRAESS, D
    NUMERISCHE MATHEMATIK, 1977, 29 (01) : 123 - 132
  • [5] Dynamic Cell Mapping Algorithm for Computing Basins of Attraction in Planar Filippov Systems
    Erazo, Christian
    Homer, Martin E.
    Piiroinen, Petri T.
    Di Bernardo, Mario
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (12):
  • [6] Regions of Attraction
    Dept. Electrical Engineering, Santa Clara University, 500 EI Camino Real, Santa Clara
    CA
    95053, United States
    Communications Control Eng., 1600, 9781441912152 (111-141):
  • [7] Computing large planar regions in termains, with an application to fracture surfaces
    Smid, M
    Ray, R
    Wendt, U
    Lange, K
    DISCRETE APPLIED MATHEMATICS, 2004, 139 (1-3) : 253 - 264
  • [8] What is the attraction to computing?
    Almstrum, VL
    COMMUNICATIONS OF THE ACM, 2003, 46 (09) : 51 - 55
  • [9] Realizing Planar Graphs as Convex Polytopes
    Rote, Guenter
    GRAPH DRAWING, 2012, 7034 : 238 - 241
  • [10] Computing monotone disjoint paths on polytopes
    Avis, David
    Kaluzny, Bohdan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (04) : 328 - 343