Computing regions of attraction with polytopes: Planar case

被引:12
|
作者
Romanchuk, BG
机构
[1] Department of Electrical Engineering, McGill University, Montreal, Que. H3A 2A7
关键词
Lyapunov stability; piecewise-linear analysis; numerical algorithms; saturation;
D O I
10.1016/S0005-1098(96)80011-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm that estimates the region of attraction of the origin using a convex polytope is developed for piecewise-linear dynamical systems. This is equivalent to the problem of computing a Lyapunov function. The R(2) case is studied here for simplicity. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:1727 / 1732
页数:6
相关论文
共 50 条
  • [41] Estimation of the regions of attraction for autonomous nonlinear systems
    Yuan, Guoqiang
    Li, Yinghui
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (01) : 97 - 106
  • [42] Improvements to algorithms for computing the Minkowski sum of 3-polytopes
    Wu, YY
    Shah, JJ
    Davidson, JK
    COMPUTER-AIDED DESIGN, 2003, 35 (13) : 1181 - 1192
  • [43] Estimation of Regions of Attraction of Aircraft Spin Modes
    Sidoryuk, Maria E.
    Khrabrov, Alexander N.
    JOURNAL OF AIRCRAFT, 2019, 56 (01): : 205 - 216
  • [44] FINITE REGIONS OF ATTRACTION FROM PROBLEM OF LURE
    SASTRY, VR
    INTERNATIONAL JOURNAL OF CONTROL, 1971, 14 (04) : 789 - +
  • [45] LYAPUNOV FUNCTIONS CONSTRUCTION FOR ESTIMATING REGIONS OF ATTRACTION
    KAMENETSKII, VA
    DOKLADY AKADEMII NAUK, 1995, 340 (03) : 305 - 307
  • [46] Normal attraction regions for stable distributions at groups
    Khokhlov, Yu.S.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1993, (06): : 80 - 81
  • [47] On a Schrödinger system with shrinking regions of attraction
    Clapp, Monica
    Saldana, Alberto
    Szulkin, Andrzej
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):
  • [48] THE STRUCTURE OF COMMUTING BY REGIONS AND ATTRACTION DISTRICTS IN HUNGARY
    FERENC, E
    DEMOGRAFIA, 1985, 28 (04): : 489 - &
  • [49] COMPUTING REEB DYNAMICS ON FOUR-DIMENSIONAL CONVEX POLYTOPES
    Chaidez, Julian
    Hutchings, Michael
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2021, 8 (04): : 403 - 445
  • [50] Computing Planar and Spherical Choreographies
    Montanelli, Hadrien
    Gushterov, Nikola I.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 235 - 256