Computing Domains of Attraction for Planar Dynamics

被引:0
|
作者
Graca, Daniel S. [1 ,2 ]
Zhong, Ning [3 ]
机构
[1] Univ Algarve, DM FCT, P-8005139 Faro, Portugal
[2] SQIG, Inst Telecommun, Lisbon, Portugal
[3] Univ Cincinnati, DMS, Cincinnati, OH 45221 USA
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this note we investigate the problem of computing the domain of attraction of a flow on R-2 for a given attractor. We consider all operator that takes two inputs, the description of the flow and a cover of the attractors, and outputs the domain of attraction for the given attractor. We show that: (i) if we consider only (structurally) stable systems, the operator is (strictly semi-)computable; (ii) if we allow all systems defined by C-1-functions, the operator is not (semi-)computable. We also address the problem of computing limit cycles on these systems.
引用
收藏
页码:179 / +
页数:3
相关论文
共 50 条
  • [1] Computing regions of attraction with polytopes: Planar case
    Romanchuk, BG
    AUTOMATICA, 1996, 32 (12) : 1727 - 1732
  • [2] A NUMERICAL-METHOD FOR COMPUTING DOMAINS OF ATTRACTION FOR DYNAMICAL-SYSTEMS
    GUTTALU, RS
    FLASHNER, H
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (04) : 875 - 890
  • [3] Domains of attraction
    不详
    ASYMPTOTIC BEHAVIOR OF DYNAMICAL AND CONTROL SYSTEMS UNDER PERTURBATION AND DISCRETIZATION, 2002, 1783 : 157 - 194
  • [4] Dynamic Cell Mapping Algorithm for Computing Basins of Attraction in Planar Filippov Systems
    Erazo, Christian
    Homer, Martin E.
    Piiroinen, Petri T.
    Di Bernardo, Mario
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (12):
  • [5] ON DOMAINS OF PARTIAL ATTRACTION
    GOLDIE, CM
    SENETA, E
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 32 (JUN): : 328 - 331
  • [6] PLANAR REGIONS OF ATTRACTION
    JOCIC, LB
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (03) : 708 - 710
  • [7] What is the attraction to computing?
    Almstrum, VL
    COMMUNICATIONS OF THE ACM, 2003, 46 (09) : 51 - 55
  • [8] Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov-like functions
    Zheng, Xiuliang
    She, Zhikun
    Liang, Quanyi
    Li, Meilun
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (06) : 2191 - 2208
  • [9] Computing the Schottky-Klein Prime Function on the Schottky Double of Planar Domains
    Darren G. Crowdy
    Jonathan S. Marshall
    Computational Methods and Function Theory, 2007, 7 (1) : 293 - 308
  • [10] DOMAINS OF ATTRACTION OF MIXING SEQUENCES
    GRIN, AG
    SIBERIAN MATHEMATICAL JOURNAL, 1990, 31 (01) : 43 - 52