Learning Object Categories From Internet Image Searches

被引:50
|
作者
Fergus, Rob [1 ]
Fei-Fei, Li [2 ]
Perona, Pietro [3 ]
Zisserman, Andrew [4 ]
机构
[1] Courant Inst, Dept Comp Sci, New York, NY 10003 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[4] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Internet image search engines; learning; object categories; recognition; unsupervised; SCALE;
D O I
10.1109/JPROC.2010.2048990
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we describe a simple approach to learning models of visual object categories from images gathered from Internet image search engines. The images for a given keyword are typically highly variable, with a large fraction being unrelated to the query term, and thus pose a challenging environment from which to learn. By training our models directly from Internet images, we remove the need to laboriously compile training data sets, required by most other recognition approaches-this opens up the possibility of learning object category models "on-the-fly.'' We describe two simple approaches, derived from the probabilistic latent semantic analysis (pLSA) technique for text document analysis, that can be used to automatically learn object models from these data. We show two applications of the learned model: first, to rerank the images returned by the search engine, thus improving the quality of the search engine; and second, to recognize objects in other image data sets.
引用
收藏
页码:1453 / 1466
页数:14
相关论文
共 50 条
  • [21] Modelling and unsupervised learning of symmetric deformable object categories
    Thewlis, James
    Bilen, Hakan
    Vedaldi, Andrea
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [22] Learning the Compositional Nature of Visual Object Categories for Recognition
    Ommer, Bjoern
    Buhmann, Joachim M.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) : 501 - 516
  • [23] Fragment-based learning of visual object categories
    Hegde, Jay
    Bart, Evgeniy
    Kersten, Daniel
    CURRENT BIOLOGY, 2008, 18 (08) : 597 - 601
  • [24] Learning Functional Object-Categories from a Relational Spatio-Temporal Representation
    Sridhar, Muralikrishna
    Cohn, Anthony G.
    Hogg, David C.
    ECAI 2008, PROCEEDINGS, 2008, 178 : 606 - +
  • [25] Incremental Learning from a Single Seed Image for Object Detection
    Lee, Sehyung
    Lim, Jongwoo
    Suh, Il Hong
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 1905 - 1912
  • [26] Learning Object-Specific Distance From a Monocular Image
    Zhu, Jing
    Fang, Yi
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3838 - 3847
  • [27] Supervised learning for object classification from image and RFID data
    Shirasaka, Yohei
    Yairi, Takehisa
    Kanazaki, Hirofumi
    Shibata, Junichi
    Machida, Kazuo
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 3001 - +
  • [28] Job searches on the Internet
    Bowman, SW
    QUALITY PROGRESS, 1997, 30 (12) : 10 - 10
  • [29] Information Searches on the Internet: Conducting Thematic Searches
    Pimenov, E. N.
    Ilyin, A. N.
    AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS, 2010, 44 (05) : 255 - 261
  • [30] Learning from the Web: Recognition Method Based on Object Appearance from Internet Images
    Hidago-Pena, Enrique
    Marin-Urias, Luis Felipe
    Montes-Gonzalez, Fernando
    Marin-Hernandez, Antonio
    Rios-Figueroa, Homero V.
    PROCEEDINGS OF THE 8TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI 2013), 2013, : 139 - +