Learning Object Categories From Internet Image Searches

被引:50
|
作者
Fergus, Rob [1 ]
Fei-Fei, Li [2 ]
Perona, Pietro [3 ]
Zisserman, Andrew [4 ]
机构
[1] Courant Inst, Dept Comp Sci, New York, NY 10003 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[3] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[4] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Internet image search engines; learning; object categories; recognition; unsupervised; SCALE;
D O I
10.1109/JPROC.2010.2048990
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we describe a simple approach to learning models of visual object categories from images gathered from Internet image search engines. The images for a given keyword are typically highly variable, with a large fraction being unrelated to the query term, and thus pose a challenging environment from which to learn. By training our models directly from Internet images, we remove the need to laboriously compile training data sets, required by most other recognition approaches-this opens up the possibility of learning object category models "on-the-fly.'' We describe two simple approaches, derived from the probabilistic latent semantic analysis (pLSA) technique for text document analysis, that can be used to automatically learn object models from these data. We show two applications of the learned model: first, to rerank the images returned by the search engine, thus improving the quality of the search engine; and second, to recognize objects in other image data sets.
引用
收藏
页码:1453 / 1466
页数:14
相关论文
共 50 条
  • [31] Internet searches evolve
    不详
    R&D MAGAZINE, 2004, 46 (02): : 31 - 31
  • [32] INTERNET HEALTH SEARCHES
    Garcia Leon, J.
    Vicente, I.
    Lopez Ibanez, G.
    Bernal Gonzalez, M.
    Gonzalez Andres, V.
    Mendez Martinez, C.
    Puerto Segura, E.
    Ivanez Gimeno, L.
    Ruiz Ramos, M.
    GACETA SANITARIA, 2009, 23 : 98 - 98
  • [33] Searches on the Internet - Tips
    Nerlich, H
    NFD INFORMATION-WISSENSCHAFT UND PRAXIS, 1997, 48 (05): : 314 - 315
  • [34] The Perceptual Effects of Learning Object Categories That Predict Perceptual Goals
    Van Gulick, Ana E.
    Gauthier, Isabel
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2014, 40 (05) : 1307 - 1320
  • [35] Learning object material categories via pairwise discriminant analysis
    Fu, Zhouyu
    Robles-Kelly, Antonio
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3487 - +
  • [36] Creating Objects and Object Categories for Studying Perception and Perceptual Learning
    Hauffen, Karin
    Bart, Eugene
    Brady, Mark
    Kersten, Daniel
    Hegde, Jay
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2012, (69):
  • [37] Learning Visual Object Categories with Global Descriptors and Local Features
    Pereira, Rui
    Lopes, Luis Seabra
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5816 : 225 - 236
  • [38] Active Learning and Discovery of Object Categories in the Presence of Unnameable Instances
    Kaeding, Christoph
    Freytag, Alexander
    Rodner, Erik
    Bodesheim, Paul
    Denzler, Joachim
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 4343 - 4352
  • [39] From Bag of Categories to Tree of Object Recognition
    Wang, Haijing
    Zhang, Tianwen
    Li, Peihua
    WSCG 2008, FULL PAPERS, 2008, : 135 - +
  • [40] Towards scalable representations of object categories: Learning a hierarchy of parts
    Fidler, Sanja
    Leonardis, Ales
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 2295 - +