Learning Functional Object-Categories from a Relational Spatio-Temporal Representation

被引:27
|
作者
Sridhar, Muralikrishna [1 ]
Cohn, Anthony G. [1 ]
Hogg, David C. [1 ]
机构
[1] Univ Leeds, Sch Comp, Leeds, W Yorkshire, England
来源
ECAI 2008, PROCEEDINGS | 2008年 / 178卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.3233/978-1-58603-891-5-606
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a framework that learns functional object-categories from spatio-temporal data sets such as those abstracted from video. The data is represented as one activity graph that encodes qualitative spatio-temporal patterns of interaction between objects. Event classes are induced by statistical generalization, the instances of which encode similar patterns of spatio-temporal relationships between objects. Equivalence classes of objects are discovered on the basis of their similar role in multiple event instantiations. Objects are represented in a multidimensional space that captures their role in all the events. Unsupervised learning in this space results in functional object-categories. Experiments in the domain of food preparation suggest that our techniques represent a significant step in unsupervised learning of functional object categories from spatio-temporal patterns of object interaction.
引用
收藏
页码:606 / +
页数:2
相关论文
共 50 条
  • [1] Learning spatio-temporal relational structures
    Bischof, WF
    Caelli, T
    APPLIED ARTIFICIAL INTELLIGENCE, 2001, 15 (08) : 707 - 722
  • [2] An object-relational approach to the representation of multi-granular spatio-temporal data
    Bertino, E
    Cuadra, D
    Martínez, P
    ADVANCED INFORMATION SYSTEMS ENGINEERING, PROCEEDINGS, 2005, 3520 : 119 - 134
  • [3] An object-relational spatio-temporal geoscience data model
    Le, Hai Ha
    Gabriel, Paul
    Gietzel, Jan
    Schaeben, Helmut
    COMPUTERS & GEOSCIENCES, 2013, 57 : 104 - 115
  • [4] Dual Contrastive Learning for Spatio-temporal Representation
    Ding, Shuangrui
    Qian, Rui
    Xiong, Hongkai
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5649 - 5658
  • [5] Implementing conceptual spatio-temporal schemas in object-relational DBMSs
    Zimanyi, Esteban
    Minout, Mohammed
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2006: OTM 2006 WORKSHOPS, PT 2, PROCEEDINGS, 2006, 4278 : 1648 - +
  • [6] Spatio-Temporal Object Relational for Biodiversity System (STORe-Biodi)
    Wahid, Mohd Taib
    Kamruzzaman, A. Z. M.
    Shariff, Abdul Rashid Mohamed
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2006, 6 (9A): : 45 - 53
  • [7] SPATIO-TEMPORAL CORRELATION LEARNING FOR MULTIPLE OBJECT TRACKING
    Jian, Yajun
    Zhuang, Chihui
    He, Wenyan
    Du, Kaiwen
    Lu, Yang
    Wang, Hanzi
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6170 - 6174
  • [8] Learning spatio-temporal patterns for predicting object behaviour
    Sumpter, N
    Bulpitt, A
    IMAGE AND VISION COMPUTING, 2000, 18 (09) : 697 - 704
  • [9] Spatio-Temporal Crop Aggregation for Video Representation Learning
    Sameni, Sepehr
    Jenni, Simon
    Favaro, Paolo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 5641 - 5651
  • [10] Video representation learning by identifying spatio-temporal transformations
    Sheng Geng
    Shimin Zhao
    Hu Liu
    Applied Intelligence, 2022, 52 : 6613 - 6622