The Cover Time of Deterministic Random Walks

被引:0
|
作者
Friedrich, Tobias [1 ]
Sauerwald, Thomas [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2010年 / 17卷 / 01期
关键词
MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The rotor router model is a popular deterministic analogue of a random walk on a graph. Instead of moving to a random neighbor, the neighbors are served in a fixed order. We examine how quickly this "deterministic random walk" covers all vertices (or all edges). We present general techniques to derive upper bounds for the vertex and edge cover time and derive matching lower bounds for several important graph classes. Depending on the topology, the deterministic random walk can be asymptotically faster, slower or equally fast as the classic random walk. We also examine the short term behavior of deterministic random walks, that is, the time to visit a fixed small number of vertices or edges.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Understanding deterministic diffusion by correlated random walks
    Klages, R
    Korabel, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (23): : 4823 - 4836
  • [32] Unbounded Discrepancy of Deterministic Random Walks on Grids
    Friedrich, Tobias
    Katzmann, Maximilian
    Krohmer, Anton
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 212 - 222
  • [33] DETERMINISTIC RANDOM WALKS FOR RAPIDLY MIXING CHAINS
    Shiraga, Takeharu
    Yamauchi, Yukiko
    Kijima, Shuji
    Yamashita, Masafumi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 2180 - 2193
  • [34] UNBOUNDED DISCREPANCY OF DETERMINISTIC RANDOM WALKS ON GRIDS
    Friedrich, Tobias
    Katzmann, Maximilian
    Krohmer, Anton
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2441 - 2452
  • [35] Exceptional points of two-dimensional random walks at multiples of the cover time
    Abe, Yoshihiro
    Biskup, Marek
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 183 (1-2) : 1 - 55
  • [36] A TIGHT LOWER-BOUND ON THE COVER TIME FOR RANDOM-WALKS ON GRAPHS
    FEIGE, U
    RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (04) : 433 - 438
  • [37] Exceptional points of two-dimensional random walks at multiples of the cover time
    Yoshihiro Abe
    Marek Biskup
    Probability Theory and Related Fields, 2022, 183 : 1 - 55
  • [38] Mean first-passage time for random walks on generalized deterministic recursive trees
    Comellas, Francesc
    Miralles, Alicia
    PHYSICAL REVIEW E, 2010, 81 (06)
  • [39] Deterministic Random Walks on the Two-Dimensional Grid
    Doerr, Benjamin
    Friedrich, Tobias
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (1-2): : 123 - 144
  • [40] THE VISITS TO ZERO OF SOME DETERMINISTIC RANDOM-WALKS
    AARONSON, J
    KEANE, M
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1982, 44 (MAY) : 535 - 553