Understanding deterministic diffusion by correlated random walks

被引:28
|
作者
Klages, R [1 ]
Korabel, N [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
关键词
D O I
10.1088/0305-4470/35/23/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Low-dimensional periodic arrays of scatterers with a moving point particle are ideal models for studying deterministic diffusion. For such systems the diffusion coefficient is typically an irregular function under variation of a control parameter. Here we propose a systematic scheme of how to approximate deterministic diffusion coefficients of this kind in terms of correlated random walks. We apply this approach to two simple examples which are a one-dimensional map on the line, and the periodic Lorentz gas. Starting from suitable Green-Kubo formulae we evaluate hierarchies of approximations for their parameter-dependent diffusion coefficients. These approximations converge exactly yielding a straightforward interpretation of the structure of these irregular diffusion coefficients in terms of dynamical correlations.
引用
收藏
页码:4823 / 4836
页数:14
相关论文
共 50 条
  • [1] A diffusion limit for generalized correlated random walks
    Gruber, U
    Schweizer, M
    JOURNAL OF APPLIED PROBABILITY, 2006, 43 (01) : 60 - 73
  • [2] Deterministic Random Walks
    Cooper, Joshua
    Doerr, Benjamin
    Spencer, Joel
    Tardos, Garbor
    PROCEEDINGS OF THE EIGHTH WORKSHOP ON ALGORITHM ENGINEERING AND EXPERIMENTS AND THE THIRD WORKSHOP ON ANALYTIC ALGORITHMICS AND COMBINATORICS, 2006, : 185 - +
  • [3] Anomalous diffusion in correlated continuous time random walks
    Tejedor, Vincent
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (08)
  • [4] Correlated dynamics and random walks in aqueous proton diffusion
    Fischer, Sean
    Dunlap, Brett
    Gunlycke, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [5] Deterministic random walks on the integersl
    Cooper, Joshua
    Doerr, Benjamin
    Spencer, Joel
    Tardos, Gabor
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (08) : 2072 - 2090
  • [6] DETERMINISTIC WALKS IN RANDOM ENVIRONMENT
    Amino, Romain
    Liverani, Carlangelo
    ANNALS OF PROBABILITY, 2020, 48 (05): : 2212 - 2257
  • [7] Deterministic walks in random environments
    Bunimovich, LA
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 187 (1-4) : 20 - 29
  • [8] Random and deterministic walks on lattices
    Boon, JP
    Statistical Physics and Beyond, 2005, 757 : 3 - 15
  • [9] Deterministic walks in random media
    Lima, GF
    Martinez, AS
    Kinouchi, O
    PHYSICAL REVIEW LETTERS, 2001, 87 (01) : 1 - 010603
  • [10] CORRELATED RANDOM-WALKS
    DELASELVA, SMT
    LINDENBERG, K
    WEST, BJ
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (1-2) : 203 - 219