Understanding deterministic diffusion by correlated random walks

被引:28
|
作者
Klages, R [1 ]
Korabel, N [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
关键词
D O I
10.1088/0305-4470/35/23/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Low-dimensional periodic arrays of scatterers with a moving point particle are ideal models for studying deterministic diffusion. For such systems the diffusion coefficient is typically an irregular function under variation of a control parameter. Here we propose a systematic scheme of how to approximate deterministic diffusion coefficients of this kind in terms of correlated random walks. We apply this approach to two simple examples which are a one-dimensional map on the line, and the periodic Lorentz gas. Starting from suitable Green-Kubo formulae we evaluate hierarchies of approximations for their parameter-dependent diffusion coefficients. These approximations converge exactly yielding a straightforward interpretation of the structure of these irregular diffusion coefficients in terms of dynamical correlations.
引用
收藏
页码:4823 / 4836
页数:14
相关论文
共 50 条
  • [21] Deterministic Approximation of Random Walks in Small Space
    Murtagh, Jack
    Reingold, Omer
    Sidford, Aaron
    Vadhan, Salil
    THEORY OF COMPUTING, 2021, 17
  • [22] Quantum random walks and piecewise deterministic evolutions
    Blanchard, P
    Hongler, MO
    PHYSICAL REVIEW LETTERS, 2004, 92 (12) : 120601 - 1
  • [23] Entropy dimension for deterministic walks in random sceneries
    Dou, Dou
    Park, Kyewon Koh
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (06) : 1908 - 1925
  • [24] Unbounded Discrepancy of Deterministic Random Walks on Grids
    Friedrich, Tobias
    Katzmann, Maximilian
    Krohmer, Anton
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 212 - 222
  • [25] DETERMINISTIC RANDOM WALKS FOR RAPIDLY MIXING CHAINS
    Shiraga, Takeharu
    Yamauchi, Yukiko
    Kijima, Shuji
    Yamashita, Masafumi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 2180 - 2193
  • [26] UNBOUNDED DISCREPANCY OF DETERMINISTIC RANDOM WALKS ON GRIDS
    Friedrich, Tobias
    Katzmann, Maximilian
    Krohmer, Anton
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2441 - 2452
  • [27] CORRELATED RANDOM-WALKS WITH RANDOM HOPPING RATES
    BRAK, R
    ELLIOTT, RJ
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (51) : 10299 - 10319
  • [28] Random walks and diffusion on networks
    Masuda, Naoki
    Porter, Mason A.
    Lambiotte, Renaud
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 716 : 1 - 58
  • [29] RANDOM-WALKS AND DIFFUSION
    DOMB, C
    OFFENBACHER, EL
    AMERICAN JOURNAL OF PHYSICS, 1978, 46 (01) : 49 - 56
  • [30] A STUDY ON CORRELATED EXPONENTIAL RANDOM-WALKS
    JOHN, TM
    MURTHY, KPN
    JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (3-4) : 753 - 763