The Cover Time of Deterministic Random Walks

被引:0
|
作者
Friedrich, Tobias [1 ]
Sauerwald, Thomas [1 ]
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2010年 / 17卷 / 01期
关键词
MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The rotor router model is a popular deterministic analogue of a random walk on a graph. Instead of moving to a random neighbor, the neighbors are served in a fixed order. We examine how quickly this "deterministic random walk" covers all vertices (or all edges). We present general techniques to derive upper bounds for the vertex and edge cover time and derive matching lower bounds for several important graph classes. Depending on the topology, the deterministic random walk can be asymptotically faster, slower or equally fast as the classic random walk. We also examine the short term behavior of deterministic random walks, that is, the time to visit a fixed small number of vertices or edges.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Deterministic Random Walks on Regular Trees
    Cooper, Joshua
    Doerr, Benjamin
    Friedrich, Tobias
    Spencer, Joel
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 766 - +
  • [22] Deterministic Random Walks on Regular Trees
    Cooper, Joshua
    Doerr, Benjamin
    Friedrich, Tobias
    Spencer, Joel
    RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (03) : 353 - 366
  • [23] Deterministic random walks on finite graphs
    Kijima, Shuji
    Koga, Kentaro
    Makino, Kazuhisa
    RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (04) : 739 - 761
  • [24] Mean cover time of one-dimensional persistent random walks
    Chupeau, Marie
    Benichou, Olivier
    Voituriez, Raphael
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [25] A TIGHT UPPER BOUND ON THE COVER TIME FOR RANDOM-WALKS ON GRAPHS
    FEIGE, U
    RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (01) : 51 - 54
  • [26] The Cover Times of Random Walks on Hypergraphs
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, 2011, 6796 : 210 - 221
  • [27] Deterministic Approximation of Random Walks in Small Space
    Murtagh, Jack
    Reingold, Omer
    Sidford, Aaron
    Vadhan, Salil
    THEORY OF COMPUTING, 2021, 17
  • [28] Quantum random walks and piecewise deterministic evolutions
    Blanchard, P
    Hongler, MO
    PHYSICAL REVIEW LETTERS, 2004, 92 (12) : 120601 - 1
  • [29] Entropy dimension for deterministic walks in random sceneries
    Dou, Dou
    Park, Kyewon Koh
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (06) : 1908 - 1925
  • [30] The cover times of random walks on random uniform hypergraphs
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    THEORETICAL COMPUTER SCIENCE, 2013, 509 : 51 - 69