Shedding Light on Variational Autoencoders

被引:1
|
作者
Ruiz Vargas, J. C. [1 ]
Novaes, S. F. [1 ]
Cobe, R. [1 ]
Iope, R. [1 ]
Stanzani, S. [1 ]
Tomei, T. R. [1 ]
机构
[1] Sao Paulo State Univ Unesp, Ctr Sci Comp NCC, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Variational Autoencoders; Machine Learning; Tensorflow; Fresnel diffraction;
D O I
10.1109/CLEI.2018.00043
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep neural networks provide the canvas to create models of millions of parameters to fit distributions involving an equally large number of random variables. The contribution of this study is twofold. First, we introduce a diffraction dataset containing computer-based simulations of a Young's interference experiment. Then, we demonstrate the adeptness of variational autoencoders to learn diffraction patterns and extract a latent feature that correlates with the physical wavelength.
引用
收藏
页码:294 / 298
页数:5
相关论文
共 50 条
  • [31] Dynamic Joint Variational Graph Autoencoders
    Mahdavi, Sedigheh
    Khoshraftar, Shima
    An, Aijun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 385 - 401
  • [32] Laplacian Pyramid of Conditional Variational Autoencoders
    Dorta, Garoe
    Vicente, Sara
    Agapito, Lourdes
    Campbell, Neill D. F.
    Prince, Simon
    Simpson, Ivor
    14TH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION (CVMP), 2017,
  • [33] EnsVAE: Ensemble Variational Autoencoders for Recommendations
    Drif, Ahlem
    Zerrad, Houssem Eddine
    Cherifi, Hocine
    IEEE ACCESS, 2020, 8 : 188335 - 188351
  • [34] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788
  • [35] Towards Visually Explaining Variational Autoencoders
    Liu, Wenqian
    Li, Runze
    Zheng, Meng
    Karanam, Srikrishna
    Wu, Ziyan
    Bhanu, Bir
    Radke, Richard J.
    Camps, Octavia
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 8639 - 8648
  • [36] Convolutional Variational Autoencoders for Image Clustering
    Nellas, Ioannis A.
    Tasoulis, Sotiris K.
    Plagianakos, Vassilis P.
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 695 - 702
  • [37] A Survey on Variational Autoencoders in Recommender Systems
    Liang, Shangsong
    Pan, Zhou
    Liu, Wei
    Yin, Jian
    De Rijke, Maarten
    ACM COMPUTING SURVEYS, 2024, 56 (10)
  • [38] Gaussian Process Prior Variational Autoencoders
    Casale, Francesco Paolo
    Dalca, Adrian V.
    Saglietti, Luca
    Listgarten, Jennifer
    Fusi, Nicolo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [39] Semi-Amortized Variational Autoencoders
    Kim, Yoon
    Wiseman, Sam
    Miller, Andrew C.
    Sontag, David
    Rush, Alexander M.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [40] Learning Latent Subspaces in Variational Autoencoders
    Klys, Jack
    Snell, Jake
    Zemel, Richard
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31