Shedding Light on Variational Autoencoders

被引:1
|
作者
Ruiz Vargas, J. C. [1 ]
Novaes, S. F. [1 ]
Cobe, R. [1 ]
Iope, R. [1 ]
Stanzani, S. [1 ]
Tomei, T. R. [1 ]
机构
[1] Sao Paulo State Univ Unesp, Ctr Sci Comp NCC, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Variational Autoencoders; Machine Learning; Tensorflow; Fresnel diffraction;
D O I
10.1109/CLEI.2018.00043
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep neural networks provide the canvas to create models of millions of parameters to fit distributions involving an equally large number of random variables. The contribution of this study is twofold. First, we introduce a diffraction dataset containing computer-based simulations of a Young's interference experiment. Then, we demonstrate the adeptness of variational autoencoders to learn diffraction patterns and extract a latent feature that correlates with the physical wavelength.
引用
收藏
页码:294 / 298
页数:5
相关论文
共 50 条
  • [41] Energy disaggregation using variational autoencoders
    Langevin, Antoine
    Carbonneau, Marc-Andre
    Cheriet, Mohamed
    Gagnon, Ghyslain
    ENERGY AND BUILDINGS, 2022, 254
  • [42] Predictive Coding with Topographic Variational Autoencoders
    Keller, T. Anderson
    Welling, Max
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1086 - 1091
  • [43] Sequential Variational Autoencoders for Collaborative Filtering
    Sachdeva, Noveen
    Manco, Giuseppe
    Ritacco, Ettore
    Pudi, Vikram
    PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 600 - 608
  • [44] Variational Autoencoders for Polyphonic Music Interpolation
    Dieguez, Pablo Lopez
    Soo, Von-Wun
    2020 25TH INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2020), 2020, : 56 - 61
  • [45] New Methods for Explainable Variational Autoencoders
    White, Riley
    Baracat-Donovan, Brian
    Helmsen, John
    McCullough, Thomas
    ARTIFICIAL INTELLIGENCE FOR SECURITY AND DEFENCE APPLICATIONS, 2023, 12742
  • [46] Scalable Graph Convolutional Variational Autoencoders
    Unyi, Daniel
    Gyires-Toth, Balint
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 467 - 472
  • [47] Variational Autoencoders for Baseball Player Evaluation
    Converse, Geoffrey
    Arnold, Brooke
    Curi, Mariana
    Oliveira, Suely
    FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 305 - 311
  • [48] Comment: Variational Autoencoders as Empirical Bayes
    Wang, Yixin
    Miller, Andrew C.
    Blei, David M.
    STATISTICAL SCIENCE, 2019, 34 (02) : 229 - 233
  • [49] Visualizing population structure with variational autoencoders
    Battey, C. J.
    Coffing, Gabrielle C.
    Kern, Andrew D.
    G3-GENES GENOMES GENETICS, 2021, 11 (01):
  • [50] HIERARCHICAL VARIATIONAL AUTOENCODERS FOR VISUAL COUNTERFACTUALS
    Vercheval, Nicolas
    Pizurica, Aleksandra
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2513 - 2517