Program-pattern multipole boundary element method for frictional contact

被引:5
|
作者
Yu, CX [1 ]
Shen, GX
Liu, DY
机构
[1] Yanshan Univ, Coll Sci, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Coll Mech Engn, Qinhuangdao 066004, Peoples R China
关键词
nonlinear programming; GMRES algorithm; node-to-surface contact; FM-BEM;
D O I
10.1007/s10338-005-0511-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A mathematical program is proposed for the highly nonlinear problem involving frictional contact. A program-pattern using the fast multipole boundary element method (FMBEM) is given for 3-D elastic contact with friction to replace the Monte Carlo method. A new optimized generalized minimal residual (GMRES) algorithm is presented. Numerical examples demonstrate the validity of the program-pattern optimization model for node-to-surface contact with friction. The GMRES algorithm greatly improves the computational efficiency.
引用
收藏
页码:76 / 82
页数:7
相关论文
共 50 条
  • [41] Large deformation frictional contact analysis with immersed boundary method
    Manuel Navarro-Jimenez, Jose
    Tur, Manuel
    Albelda, Jose
    Jose Rodenas, Juan
    COMPUTATIONAL MECHANICS, 2018, 62 (04) : 853 - 870
  • [42] Large deformation frictional contact analysis with immersed boundary method
    José Manuel Navarro-Jiménez
    Manuel Tur
    José Albelda
    Juan José Ródenas
    Computational Mechanics, 2018, 62 : 853 - 870
  • [43] Mathematical Programming Solution for the Frictional Contact Multipole BEM
    于春肖
    申光宪
    刘德义
    Tsinghua Science and Technology, 2005, (01) : 51 - 56
  • [44] A mortared finite element method for frictional contact on arbitrary interfaces
    Kim, Tae Yeon
    Dolbow, John
    Laursen, Tod
    COMPUTATIONAL MECHANICS, 2007, 39 (03) : 223 - 235
  • [45] A mortared finite element method for frictional contact on arbitrary interfaces
    Tae Yeon Kim
    John Dolbow
    Tod Laursen
    Computational Mechanics, 2007, 39 : 223 - 235
  • [46] Virtual element method for a frictional contact problem with normal compliance
    Wu, Bangmin
    Wang, Fei
    Han, Weimin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 107
  • [47] A virtual element method for frictional contact including large deformations
    Wriggers, Peter
    Rust, Wilhelm T.
    ENGINEERING COMPUTATIONS, 2019, 36 (07) : 2133 - 2161
  • [48] A finite element method for granular flow through a frictional boundary
    Wu, Yong-Hong
    Hill, James M.
    Yu, Aibing
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (04) : 486 - 495
  • [49] AUTOMATIC LOAD INCREMENTATION TECHNIQUE FOR PLANE ELASTOPLASTIC FRICTIONAL CONTACT PROBLEMS USING BOUNDARY-ELEMENT METHOD
    HUESMANN, A
    KUHN, G
    COMPUTERS & STRUCTURES, 1995, 56 (05) : 733 - 744
  • [50] The numerical treatment of local variables in three-dimensional frictional contact problems using the boundary element method
    Leahy, JG
    Becker, AA
    COMPUTERS & STRUCTURES, 1999, 71 (04) : 383 - 395