Program-pattern multipole boundary element method for frictional contact

被引:5
|
作者
Yu, CX [1 ]
Shen, GX
Liu, DY
机构
[1] Yanshan Univ, Coll Sci, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Coll Mech Engn, Qinhuangdao 066004, Peoples R China
关键词
nonlinear programming; GMRES algorithm; node-to-surface contact; FM-BEM;
D O I
10.1007/s10338-005-0511-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A mathematical program is proposed for the highly nonlinear problem involving frictional contact. A program-pattern using the fast multipole boundary element method (FMBEM) is given for 3-D elastic contact with friction to replace the Monte Carlo method. A new optimized generalized minimal residual (GMRES) algorithm is presented. Numerical examples demonstrate the validity of the program-pattern optimization model for node-to-surface contact with friction. The GMRES algorithm greatly improves the computational efficiency.
引用
收藏
页码:76 / 82
页数:7
相关论文
共 50 条
  • [21] A BOUNDARY ELEMENT AND MATHEMATICAL-PROGRAMMING APPROACH FOR FRICTIONAL CONTACT PROBLEMS
    GAKWAYA, A
    LAMBERT, D
    CARDOU, A
    COMPUTERS & STRUCTURES, 1992, 42 (03) : 341 - 353
  • [22] BOUNDARY ELEMENT-COMPLIANCE MATRIX METHOD FOR 3D ELASTIC FRICTIONAL CONTACT ANALYSIS
    鲍劲松
    张伟华
    巩云鹏
    JournalofShanghaiJiaotongUniversity, 2002, (01) : 59 - 63
  • [23] SYMMETRICAL GALERKIN BOUNDARY-ELEMENT METHOD FOR QUASI-BRITTLE-FRACTURE AND FRICTIONAL CONTACT PROBLEMS
    MAIER, G
    NOVATI, G
    CEN, Z
    COMPUTATIONAL MECHANICS, 1993, 13 (1-2) : 74 - 89
  • [24] Boundary element-compliance matrix method for three-dimensional elastic frictional contact analysis
    Gong, Yun-peng
    Zhang, Wei-hua
    Bao, Jin-song
    Wang, Dan
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2000, 21 (03): : 305 - 308
  • [25] A REVIEW OF 3 ALTERNATIVE APPROACHES TO MODELING FRICTIONAL CONTACT PROBLEMS USING THE BOUNDARY-ELEMENT METHOD
    OLUKOKO, OA
    BECKER, AA
    FENNER, RT
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 444 (1920): : 37 - 51
  • [26] Parallel Fast Multipole Boundary Element Method for Crustal Dynamics
    Quevedo, Leonardo
    Morra, Gabriele
    Mueller, R. Dietmar
    9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10
  • [27] A multipole based Boundary Element Method for moving boundary problems in axisymmetric geometry
    Singh, J.
    Gliere, A.
    Achard, J. -L.
    BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXX, 2008, 47 : 43 - 52
  • [28] A fast multipole boundary element method for a modified hypersingular boundary integral equation
    Of, G
    Steinbach, O
    ANALYSIS AND SIMULATION OF MULTIFIELD PROBLEMS, 2003, 12 : 163 - 169
  • [29] A new adaptive algorithm for the fast multipole boundary element method
    Bapat, M.S.
    Liu, Y.J.
    CMES - Computer Modeling in Engineering and Sciences, 2010, 58 (02): : 161 - 183
  • [30] A New Adaptive Algorithm for the Fast Multipole Boundary Element Method
    Bapat, M. S.
    Liu, Y. J.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 161 - 183