Program-pattern multipole boundary element method for frictional contact

被引:5
|
作者
Yu, CX [1 ]
Shen, GX
Liu, DY
机构
[1] Yanshan Univ, Coll Sci, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Coll Mech Engn, Qinhuangdao 066004, Peoples R China
关键词
nonlinear programming; GMRES algorithm; node-to-surface contact; FM-BEM;
D O I
10.1007/s10338-005-0511-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A mathematical program is proposed for the highly nonlinear problem involving frictional contact. A program-pattern using the fast multipole boundary element method (FMBEM) is given for 3-D elastic contact with friction to replace the Monte Carlo method. A new optimized generalized minimal residual (GMRES) algorithm is presented. Numerical examples demonstrate the validity of the program-pattern optimization model for node-to-surface contact with friction. The GMRES algorithm greatly improves the computational efficiency.
引用
收藏
页码:76 / 82
页数:7
相关论文
共 50 条
  • [31] Preconditioned fast adaptive multipole boundary-element method
    Buchau, A
    Rucker, WM
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 461 - 464
  • [32] The fast multipole boundary element method for potential problems: A tutorial
    Liu, Y. J.
    Nishimura, N.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (05) : 371 - 381
  • [33] A new simple multidomain fast multipole boundary element method
    Huang, S.
    Liu, Y. J.
    COMPUTATIONAL MECHANICS, 2016, 58 (03) : 533 - 548
  • [34] A new simple multidomain fast multipole boundary element method
    S. Huang
    Y. J. Liu
    Computational Mechanics, 2016, 58 : 533 - 548
  • [35] Fast multipole acceleration of the MEG/EEG boundary element method
    Kybic, J
    Clerc, M
    Faugeras, O
    Keriven, R
    Papadopoulo, T
    PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (19): : 4695 - 4710
  • [36] Fast multipole boundary element method for predicting sound fields
    Sakuma, T
    INTER-NOISE 99: PROCEEDINGS OF THE 1999 INTERNATIONAL CONGRESS ON NOISE CONTROL ENGINEERING, VOLS 1-3, 1999, : 1639 - 1644
  • [37] Fast multipole boundary element method for diffuse optical tomography
    Xu Jun
    Xie Wen-Hao
    Deng Yong
    Wang Kan
    Luo Zhao-Yang
    Gong Hui
    ACTA PHYSICA SINICA, 2013, 62 (10)
  • [38] Numerical homogenization by using the fast multipole boundary element method
    Ptaszny, J.
    Fedelinski, P.
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2011, 11 (01) : 181 - 193
  • [39] Fast multipole boundary element method for electrostatic field computations
    Of, G.
    Kaltenbacher, M.
    Steinbach, O.
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (02) : 304 - 319
  • [40] Parallelization of a fast multipole boundary element method with Cluster OpenMP
    Buchau, Andre
    Tsafak, Serge Mboonjou
    Hafla, Wolfgang
    Rucker, Wolfgang M.
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1338 - 1341