Extension Theory for Braided-Enriched Fusion Categories

被引:6
|
作者
Jones, Corey [1 ]
Morrison, Scott [2 ]
Penneys, David [3 ]
Plavnik, Julia [4 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Sydney, Sydney, NSW 2006, Australia
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[4] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
QUILLEN MODEL STRUCTURE; CLASSIFICATION; MODULE;
D O I
10.1093/imrn/rnab133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a braided fusion category V, a V-fusion category is a fusion category C equipped with a braided monoidal functor F : V -> Z(C). Given a fixed V-fusion category (C, F) and a fixed G-graded extension C subset of D as an ordinary fusion category, we characterize the enrichments (F) over tilde : V -> Z(D) of D that are compatible with the enrichment of C. We show that G-crossed extensions of a braided fusion category C are G-extensions of the canonical enrichment of C over itself. As an application, we parameterize the set of G-crossed braidings on a fixed G-graded fusion category in terms of certain subcategories of its center, extending Nikshych's classification of the braidings on a fusion category.
引用
收藏
页码:15632 / 15683
页数:52
相关论文
共 50 条
  • [41] Integrability and Braided Tensor Categories
    Paul Fendley
    Journal of Statistical Physics, 2021, 182
  • [42] Π-twist and orientability in braided categories
    Alvarez, JNA
    Vilaboa, JMF
    Rodríguez, RG
    López, MPL
    Novoa, EV
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 188 (1-3) : 7 - 32
  • [43] Cleft extensions in braided categories
    Alvarez, JNA
    Vilaboa, JMF
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (07) : 3185 - 3196
  • [44] Invertible braided tensor categories
    Brochier, Adrien
    Jordan, David
    Safronov, Pavel
    Snyder, Noah
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (04): : 2107 - 2140
  • [45] On dualizability of braided tensor categories
    Brochier, Adrien
    Jordan, David
    Snyder, Noah
    COMPOSITIO MATHEMATICA, 2021, 157 (03) : 435 - 483
  • [46] Pointed braided tensor categories
    Bontea, Costel-Gabriel
    Nikshych, Dmitri
    TENSOR CATEGORIES AND HOPF ALGEBRAS, 2019, 728 : 67 - 94
  • [47] Braided and coboundary monoidal categories
    Savage, Alistair
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 229 - 251
  • [49] BRAIDED SKEW MONOIDAL CATEGORIES
    Bourke, John
    Lack, Stephen
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 19 - 63
  • [50] Centers of braided tensor categories
    Liu, Zhimin
    Zhu, Shenglin
    JOURNAL OF ALGEBRA, 2023, 614 : 115 - 153