For a braided fusion category V, a V-fusion category is a fusion category C equipped with a braided monoidal functor F : V -> Z(C). Given a fixed V-fusion category (C, F) and a fixed G-graded extension C subset of D as an ordinary fusion category, we characterize the enrichments (F) over tilde : V -> Z(D) of D that are compatible with the enrichment of C. We show that G-crossed extensions of a braided fusion category C are G-extensions of the canonical enrichment of C over itself. As an application, we parameterize the set of G-crossed braidings on a fixed G-graded fusion category in terms of certain subcategories of its center, extending Nikshych's classification of the braidings on a fusion category.
机构:
Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, FranceUniv Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
Brochier, Adrien
Jordan, David
论文数: 0引用数: 0
h-index: 0
机构:Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
Jordan, David
Safronov, Pavel
论文数: 0引用数: 0
h-index: 0
机构:Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
Safronov, Pavel
Snyder, Noah
论文数: 0引用数: 0
h-index: 0
机构:Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
机构:
Sorbonne Univ, Univ Paris, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, FranceSorbonne Univ, Univ Paris, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France
Brochier, Adrien
Jordan, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Edinburgh, Sch Math, Edinburgh, Midlothian, ScotlandSorbonne Univ, Univ Paris, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France