Extension Theory for Braided-Enriched Fusion Categories

被引:6
|
作者
Jones, Corey [1 ]
Morrison, Scott [2 ]
Penneys, David [3 ]
Plavnik, Julia [4 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Sydney, Sydney, NSW 2006, Australia
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[4] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
QUILLEN MODEL STRUCTURE; CLASSIFICATION; MODULE;
D O I
10.1093/imrn/rnab133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a braided fusion category V, a V-fusion category is a fusion category C equipped with a braided monoidal functor F : V -> Z(C). Given a fixed V-fusion category (C, F) and a fixed G-graded extension C subset of D as an ordinary fusion category, we characterize the enrichments (F) over tilde : V -> Z(D) of D that are compatible with the enrichment of C. We show that G-crossed extensions of a braided fusion category C are G-extensions of the canonical enrichment of C over itself. As an application, we parameterize the set of G-crossed braidings on a fixed G-graded fusion category in terms of certain subcategories of its center, extending Nikshych's classification of the braidings on a fusion category.
引用
收藏
页码:15632 / 15683
页数:52
相关论文
共 50 条